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CHAPTER 2

ORBITAL MECHANICS

HE STUDY of trajectories and orbits of vehicles in space is not a new science

but is the application of the concepts of celestial mechanics to space vehicles.
Celestial mechanics, which is mainly concerned with the determination of tra-
jectories and orbits in space, has been of interest to man for a long time. When
the orbiting bodies are man-made (rather than celestial), the topic is generally
known as orbital mechanics.

The early Greeks postulated a fixed earth with the planets and other celestial
bOdlCS moving around the earth, a geocentnc universe. About 300 B. C., Aristar-
chus of-Samos suggested that the sun was Was Tixed and that the planets, including
the earth, were in circular orbits around the sun. Because Aristarchus’ ideas were
too revolutionary for his day and age, they were rejected, and the geocentric
theory continued to be the accepted theory. In the second century A.D., Ptolemy
amplified the geocentric theory by explaining the apparent motion of the planets
by a “wheel inside a wheel” arrangement. According to this theory, the planets
revolve about imaginary planets, which in turn revolve around the earth. It is
surprising to note that, even though Ptolemy considered the system as geocentric,
his calculations of the distance to the moon were in error by only 2%. Finally, in
the year 1543, some 1800 years after Aristarchus had proposed a heliocentric
(sun-centered) system, a Polish monk named Copernicus pubhsﬁmd his De
Revolutionibus Orbium Coelestium, which again proposed the heliocentric theory.
This work represented an advance, but there were still some inaccuracies in the
theory. For example, Copernicus thought that the orbital paths of all planets were
circles and that the centers of the circles were displaced from the center of the
sun.

The next step in the field of celestial mechanics was a giant one made by a
German astronomer, Johannes Kepler (1571-1630). After analyzing the data
from his own observations and those of the Danish astronomer Tycho Brahe,
Kepler stated his three laws of planetary motion.

A contemporary of Kepler’s, named Galileo, proposed some new ideas and
conducted experiments, the results of which finally caused acceptance of the
heliocentric theory. Some of Galileo’s ideas were expanded and improved by
Newton and became the foundation for Newton’s three laws of motion. Newton’s
laws of motion, with his law of universal gravitation, made it possible to prove
mathematically that Kepler’s laws of planetary motion are valid.

Kepler’s and Newton’s work brought celestial mechanics to its modern state
of development, and the major improvements since the days of Newton have
been mainly in mathematical techniques, which make orbital calculations easier.
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Because the computation of orbits and trajectories is the basis for predicting
and controlling the motion of all bodies in space, this chapter describes the fun-
damental principles of orbital mechanics upon which these computations are
based. It also shows how these principles apply to the orbits and trajectories used
in space operations.

MOTION OF BODIES IN ORBIT

Bodies in space move in accordance with defined physical laws. Analysis of
orbital paths is accomplished by applying these laws to specific cases. Orbital
motion is different from motion on the surface of the earth; however, many con-
cepts and terms are transferable, and similar logic can be applied in both cases.
An understanding of simplified linear and angular motion will permit a more
thorough appreciation of a satellite’s path in space.

Linear Motion

Bodies in space are observed to be continuously in motion because they are
in different positions at different times. In describing motion, it is important to
use a reference system. Otherwise, misunderstanding and inaccuracies are likely
to result. For -example, a passenger on an airliner may say that the stewardess
moves up the aisle at a rate of about 5 ft per sec, but, to the man on the ground,
the stewardess moves at a rate of the aircraft’s velocity plus 5 ft per sec. The
man in the air and the man on the ground are not using the same reference
system. For the present, the matter of a reference system will be simplified by
first describing movement along a straight line, or what is called rectilinear
motion.

Rectilinear motion can be described in terms of speed, time, and distance.
Speed is the distance traveled in"a unit of time, or the time rate of change of
distance. An object has uniform speed when it moves over equal distances in
equal periods of time. Speed does not, however, completely describe motion.

Motion is more adequately described if a direction as well as a speed is given.
A speedometer tells how fast an automobile is going. If a direction is associated
with speed, the motion is now described as a velocity. A velocity has both a
magnitude (speed) and a direction, and it is therefore a vector quantity.

Uniform speed in a straight line is not the same as uniform speed along a
curve. If a body has uniform motion along a straight line for a given time, then
average velocity is represented by the equation v = —Z—__% In the equation,
S, is the initial position, s, is the final position, t, is the initial time, and t; is the
final time; or more simply, the velocity is the change in position divided by the
change in time. The units of velocity are distance divided by time, such as ft
per sec or knots (nautical miles per hour).* Since velocity is a vector quantity,
it may be treated mathematically or graphically as a ‘a vector.

If velocity is not constant from point to point (i.e., if either direction or speed
is changed), there i acceleration. Acceleration, which is also a vector quantity,

* The nautical mile (NM) is one minute of a great circle. In this course, use the conversion that 1 NM =
6,080 feet = 1.15 statute miles.
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is the time rate of change of velocity. The simplest type of acceleration is one
in which the motion is always in the same direction and the velocity changes
equal amounts in equal lengths of time. If this occurs, the acceleration is constant,
and the motion can be described as being uniformly accelerated.

Vi — Y
tt— 1t
specified time interval. A good example of a constant acceleration is that of a
free-falling body in a vacuum near the surface of the earth. This acceleration
has been measured as approximately 32.2 ft per sec per sec, or 32.2 ft per sec®
It is usually given the symbol g. Since an acceleration is a change in velocity over
a period of time, its units are ft/sec®, or more generally, a length over a time
squared. Actually, constant acceleration rarely exists, but the concepts of constant
acceleration can be adapted to situations where the acceleration is not constant.

The following three equations are useful in the solutions of problems involving
linear motion:

The equation a,, = defines the average acceleration, over the

1)s = vt + ..*lztf_
2) v = v, + at
(3) 2as = vi2 — V2

where s is linear displacement, v, is initial linear velocity, v; is final linear velocity,
a is constant linear acceleration, and t is the time interval.

Angular Motion

Ifa particle moves along the circumference of a circle with_a constant tangential

rection of motion is constantly changing. Now, acceleration 1s defined as the time
rate of change of velocity. Since the velocity in uniform circular motion is chang-
ing, there must be an acceleration. If this acceleration acted in the direction of
motion, that is, the tangential direction, the magnitude of the velocity (the speed)
would change. But, since the original statement assumed that the speed was
constant, the acceleration in the tangential direction must be equal to zero. There-
fore, any acceleration that exists must be perpendicular to the tangential direction,
or in other words, any acceleration must be in the radial direction (along the
radius).

Average speed is equal to the distance traveled divided by the elapsed time.
For uniform circular motion, the distance in one lap around the circle is 2ar,
which is covered in one period (P). Period is the time required to make one
trip around the circumference of the circle. Therefore, the tangential speed

27y . . . . .
Vi = ;,T . In uniform circular motion, the particle stays the same distance from
the center, therefore, radial speed, v, = 0. It has already been shown that
¢ = 0; and it will be shown in the next section that a, = 4”;;" = ﬁ,
T
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Translatory motion is concerned with linear displacement, s; velocity, v; and ac-
celeration, a. Angular motion uses an analogous set of quantities called angular dis-
placement, 0; angular velocity, w; and angular acceleration, o.

In describing angular motion, it is convenient to think of it in terms of the rota-
tion of a radius arm (r), as shown in Figure 1. The radius arm initially coincided
with the polar axis, but at some time later (t seconds) it was positioned as shown.

6 = r§_ 1 radian

Figure 1. Position of radius arm as rotated one radian (57.3 degrees) from the starting
point.

Angular displacement (6#) is measured in degrees or radians. A radian is the
angle at the center of a circular arc which subtends an arc length equal to the radius
length. If the length of s equaled the length of r, § would be equal to one radian, or
57.3°. The central angle of a complete circle is 360° or 24 radians (27 = 6.28).

The following equations for angular motion are analogous to those studied earlier
for rectilinear motion:

6 = -%—-radians
Way = Mrad/sec
tf - to
_— W T Wy 2
Oy = —2——2rad/sec
o = S erad/
W = @, + at
12
6 = w, + C;
200 = wf2 - woz

In the equations, 6; is final angular position; 6, is initial angular position; s is linear
displacement (arc length); r is the radius; @ is average angular speed; w; is final
angular speed; w, is initial angular speed; t; is final time; t, is initial time; and « is
constant angular acceleration.

If a body is rotating about a center on a radius r, the tangential linear quantities
are related to the angular quantities by the following formulas [where 6, w, and «
are in radians]:

s = rf
Ve = T
a = ra

N
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Principles of the Calculus Applied to Astromautics

Computations in the calculus are based upon the idea of a limit of a variable. Ac-
cording to the formal definition, the variable x is said to approach the constant 1 as
a limit when the successive values of x are such thait the absolute value of the differ-
ence x — 1 ultimately becomes and remains less than any preassigned positive num-
ber, however small.

An example will make the definition easier to understand. The area of a regular
polygon inscribed in a circle approaches the area of the circle as a limit as the num-
ber of sides of the polygon approaches infinity (Fig. 2).

Figure 2. Increase in the number of sides of a regular polygon inscribed in a circle.

The area of a triangle is 1/2 bh. In general, if there are n sides to a polygon, the
polygon is made up of n triangles as shown in Figure 2. Therefore, the area of the
polygon is 1/2 nbh. As the number of sides (n) approaches infinity as a limit, the
product nb approaches the circumference of the circle (¢). Also, as n approaches in-
finity, the value of h approaches the radius (r) as a limit.

lim 1/2 nbh = cr
n -—> o 2

This is read, “The limit of 1/2 nbh as n approaches infinity is equal to %{.”

But ¢ = 2#r

.. lim area of the polygon = lim nbh _ (271)r
n —> o n-=> o 2 2
and ~(-2-—"£r~li = qr? = area of the circle

Now, an increment is the difference in two values of a variable. In the example
above, the increase in area when the inscribed polygon increases the number of sides
by one is an increment of area; that is, the area of an inscribed square minus the
area of an inscribed triangle is an increment of area. An increment is written as Ax
which is read “delta x,” and does not mean A multiplied by x.
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In the previous section the radial acceleration for uniform circular motion was
given as a, = Y With the concepts of an increment and a limit, the value for
T

radial acceleration can be determined mathematically. In Figure 3, an increment of
arc has been expanded to permit closer examination. The length r is the distance
from the center of the circle to the circumference. The horizontal distance v.At is

v, At A

2
a At
r

2

Figure 3. An increment of an arc (left) and the increment expanded (right) to show
change in velocity.

the distance a body in uniform motion with a velocity v; would move in the time At.

However, at the completion of the increment of time the body is not at point A but

at point B, because this is uniform circular motion. The distance from A to B is

+ ar At?
2

equal tov, A t where the subscript r refers to radial. However, for uni-

a. At?
2

form circular motion v, = 0. Therefore, the distance AB is equal to . Now,

applying the Pythagorean theorem to the triangle,

2
4+ (v; A)? = [r + ——ar§t2:]

or,r2+vt2At2=r2+rarAt2+_%ff.ﬁ

Subtracting r? from both sides,

2 4
VtzAt2=rarAt2+~a—’-—4é1——

Dividing both sides by A t2




To find the instantaneous values take the limitas At = O.

2
vt2=rar+_g‘l._(..Q_)_.=rat
4
. . vE
Car = = As was to be demonstrated.

This text does not attempt to teach the processes of differentiating and integrating,
but its purpose is to give the student some understanding of how the calculus is used
in the study of space.

The definition of the derivative of y with respect to x is, in symbol form, g.){-
= lm Ay Any calculus book has a table of derivatives, and there is also
Ax—>0 A x

one in The Engineer’s Manual by Ralph G. Hudson on pages 31 and 32.
The average velocity over a period of time, as given in the previous section, is:

— 5¢—8o
VT
Usually the average velocity is not of direct value in analysis, but the instanta-
neous velocity is. The speedometer in a car measures instantaneous speed, and if a
motorist is arrested for speeding, it is because of his instantaneous velocity, not his
average velocity. If s is the path of a particle, its instantaneous velocity is equal to:
ds = lim As
dt At—>0At’

Example: A particle moves so that its distance from the origin at any time follows
the formula s = t3. Find its average and final, velocity and acceleration after 3 sec-
onds.

— _Sf—S, t, = 0, s, = 0
V==
=t t = 3, se = 27
-0
Vay = —231:—6— = 9 Answer
= 4 _ d ()
Ve dt dt

From page 32 of The Engineer’s Manual:

d n — n—1 _(_1_‘_-1__
dx (u) nu dx

___i_ = 3—1 _‘it__ —_ 2
a ) 3t N 3t

ve = 3(3)2 = 27 Answer
Ve —vV, _ 27—0

gy = te =1, 3 = 9 Answer
= dve _ d@3t?) _ 4t o e =
a at i = 2 3t 6t 18 Answer
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Note that with the use of differential calculus, final or instantaneous values for ve-
locity and acceleration can be determined, but only average values can be deter-
mined from the formulas given in the previous section.

If, in the example above, the acceleration were given as a; = 6t, the instanta-
neous velocity and position could be determined by the process of integration. Inte-
gral calculus is a summation process that is the inverse of differential calculus.

Example: a; = 6t. Find v; after 3 seconds. If a curve is drawn with acceleration
on the vertical axis and time on the horizontal axis, the area under the curve is the
velocity (Fig. 4). Integration gives the sum of all the individual shaded rectangles as

o NN

Figure 4. Graph of the continuous function a; = 6t.

A t approaches 0 as a limit. As A t->0, the area of the rectangles approaches the area
under the curve as a limit and is the velocity in this problem. The symbol for inte-
gration is f°. From the table of fundamental theorems on integrals (Hudson’s The

Engineer’s Manual, p. 39),
n == “_ll_l.l_ii.__
/u du | + ¢

In this example problem, the limits of integration, t = 0 to t = 3, are specified, so
the + c (constant of integration) may be dropped.

3 3
_ _ 6t 1+1 3
Vf=fafdt~f6tdt——2— )

= 3(3)2-3(0)2=27  Answer

[+]

3t2

1l

Ve
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The processes of integration and differentiation of variables as applied to the
computation of velocity and acceleration through the calculus are part of the study
of motion taken up in the branch of dynamics known as kinematics. The study of
the forces causing the motion belongs to another branch of dynamics called kinetics.

LAWS OF MOTION

Natural bodies in space follow the basic laws of dynamics, as described by
Newton’s universal law of gravitation and his three laws of motion. By applying
the basic laws and making use of calculus (also developed by Newton), one can
explain and prove Kepler’s three laws of planetary motion. It would be well to
review Kepler’s laws before stating Newton’s law of universal gravitation, which
is one of the laws upon which computation of trajectories and orbits* is based,
and Newton’s three laws of motion, which describe terrestrial motion as well as
celestial mechanics.

Kepler’s L

From his observations and study, Kepler concluded that the planets travel
around the sun in an orbit that is not quite circular. He stated his first law thus:
The orbit_of .each planet is_an ellipse with the sun at one focus.

Later Newton found that certain refinements had to be made to Kepler’s first
law to take into-account perturbing influences. As the law is applied to manmade
satellites, we must assume that perturbing influences like air resistance, the non-
spherical (pear shape) shape of the earth, and the influence of other heavenly
bodies are negligible. The law as applied to statellites is as follows: The orbit of a
satellite is an_ellipse with the center of the earth at one focus. The patﬁwéuf a
ballistic missile, not including the powered and reentry portions, is also an
ellipse, but one that happens to intersect the surface of the earth.

Kepler’s second law, or law of areas, states: Every planet revolves so that the line
joining it to the center of the sun sweeps over equal areas in equal times.

To fit earth orbital systems, the law should be restated thus: Every satellite

areas in equal time intervals.

When the orbit is circular, the application of Kepler’s second law is clear, as
shown in Figure 5. In making one complete revolution in a circular orbit, a
satellite at a constant distance from the center of the earth (radius r) would,
for example, sweep out eight equal areas in the total time period (P = 1). Each
of these eight areas is equal and symmetrical. According to Kepler’s second law,
the time required to sweep out each of the eight areas is the same. When a
satellite is traversing a circular orbit, therefore, its speed is constant.

When the orbit is elliptical rather than circular, the application of Kepler’s
second law is not quite so easy to see; although the areas are equal, they are
not symmetrical (Fig. 6). Note, for example, that the arc of Sector I is much

longer than the arc of Sector V. Therefore, since the radius vector sweeps equal

* The terms ‘‘trajectory” and ‘“‘orbit”” are sometimes used interchangeably. Use of the term ‘‘trajectory”
came to astronautics from ballistics, the science of the motion of projectiles shot from artillery or firearms,
or of bombs dropped from aircraft. The term “orbit”” is used in referring to natural bodies, spacecraft, and
manmade satellites. It is the path made by a body in its revolution about another body, as by a planet about
the sun or by an artificial satellite about the earth.
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Figure 5. Law of areas as applied to a circular orbit.

areas in equal fractions of the total time period, the satellite must travel much
faster around Sector I (near perigee) than around Sector A\ (near apogee) The
Qerggee (a word derived from the Greek preflx peri-, meamng near r,” and the
Greek root ge, meaning “pertaining to the earth”) is the point of the orbit nearest

the earth. The .apogee is that point in the orbit at the greatest dlstance from the
earth (the Greek prefix apo- means “from” or “away Irom™).

TE—

Figure 6. Law of areos as applied to an elliptical orbit.

. Kepler’s third law, also known as the harmonic law, states: The squares of
the sidereal periods* of any two planets are to each other as the cubes of their
mean distances from the center of the sun.

To fit an earth orbital system, Kepler’s third law should be restated thus:
The squares of the periods of the orbits of two satellites are proportional to each
other as the cubes of their mean distances from the- center of the earth. The

* The period of a planet about the sun.
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mean distance is the length of the semimajor axis (a) of the ellipse, which is an
average of the distances to perigee and apogee. Of course, in a circular orbit,
the mean distance is the radius, r.

Newton’s Laws

While Kepler was working out his three laws of planetary motion, Galileo, an
Italian physicist and astronomer, was studying the effects of gravity on falling
bodies. Newton drew upon the work of both Kepler and Galileo to formulate
his laws of motion.

Newton’s first law states: Every body continues in a state of rest or of uniform
motion in a straight line, unless it is compelled to change that state by a force
imposed upon it. In other words, a body at rest tends to remain at rest, and a
body in motion tends to remain in motion unless it is acted upon by an outside
force. This law is sometimes referred to as the law of inertia.

The second law of motion as stated by Newton says: When a force is applied
to a body, the time rate of change of momentum is proportional to, and in the
direction of, the applied force. If the mass remains constant, this law can be
written as F = Ma.

Newton’s third law of motion is the law of action and reaction: For every
action there is a reaction that is equal in magnitude but opposite in direction to

the action. If body A exerts a force on body B, then body B exerts an equal
force in the opposite direction on body A.

Force as Measured in the English System

Newton’s three laws of motion are stated in terms of four quantities: force,
mass, length, and time., Three of these, length, time and either force or mass,
may be completely independent, and the fourth is defined in terms of the other
three by Newton’s Second Law. Since the units and relative values of these
quantities were not known, Newton stated his second law as a proportionality.
Assuming that mass does not change with time, this proportionality is stated as
F o« ma. If proper units are selected, this statement may be written as an
equation:

F = ma

The following are used in the metric system of measurement:
F (dynes) = m (grams) times a (centimeters per second per second)

F (Newtons) = m (kilograms) times a (meters per second per second)

The most common force experienced is that of weight, the measure of the
body’s gravitational attraction to the earth or other spatial body. Since this
attraction is toward the center of the earth, weight, like any force, is a vector
quantity. When the only force concerned is weight, the resulting acceleration is
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normally called “g,” the acceleration due to gravity. For this special case,
Newton’s Second Law can then be written:

W = Mg

This equation can be used as a definition of mass. The value of g near the
surface of the earth is approximately 32.2 feet per second per second; “g” is a
vector quantity since it is directed always toward the center of the earth. If the
weight, W, is expressed in pounds, rearranging gives:

W (pounds)

M = g (feet/sec?)

The unit of mass in this equation is called a “slug.” Note that mass is a scalar
quantity* and is an inherent property of the amount of matter in a body. Mass
is independent of the gravitational field, whereas weight is dependent upon the
field, the position in the field, and the mass of the body being weighed.

Finally, Newton’s Second Law may now be written:

F (pounds) = M (slugs) times a (ft/sec?)

The following example shows the use of this system of units and the magnitude
of the “slug”:

A package on earth weighs 161 pounds.

Find: (a) its mass in slugs.
(b) the force necessary to just lift it vertically from a surface.

(c) the force necessary to accelerate it 10 ft/sec® on a smooth, level
surface.

(d) its weight if it were on the moon; assume the value of “g” there is
1% of that value here on the earth.

(e) its mass on the moon.

Solution:
_ W _ 161 pounds
(@) MGslugs) = —5= = 255 /sec?
(b) F =W = Mg = (5slugs) (32.2 ft/sec®) = 161 pounds

The force must be applied upwards, in the direction opposite to weight.
(c) F = Ma = (5slugs) (10 ft/sec?) = 50 pounds

= 5 slugs

(d) Wnoon = M Zuoon = (5 slugs) (*326;% ft/sec?) = 26.83 pounds

Wmoon  _ _26.83 pounds
Emoon 32.2 ﬂ‘,/SeC2 =5 Slugs
6

(e) MIDOOH =

* A scalar quantity has magnitude only, in contrast to a vector quantity which has magnitude and direction.
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This last solution is, of course, to reemphasize that mass is independent of
position. It will be shown later that the local value of g varies with altitude
above the earth. It is significant to note that the weight will vary such that

the ratio-‘g— remains constant,
Energy and Work
Work, w, is defined as the product of the component of force in the direction of
motion and the distance moved. Thus, if a force, F, is applied and a body moves a

distance, s, in the direction the force is applied, w = Fs (Fig. 7). The units of work
are foot-pounds. Work is a scalar as distinguished from a vector quantity.

w = Fs

F [

4 1|
J7 777777 7777777777777 77777777/777777
k-— S ——'—"—"‘""

Figure 7. Work performed as a force (F) is moved over the distance s.

To do work against gravity, a force must be applied to overcome the weight,
which is the force caused by gravitational acceleration, g.
Therefore, F = Mg. If the body is lifted a height h (Fig. 8) and friction is negligi-
ble, w = Mgh. For problems in which h is mich less than the radius from the cen-
ter of the earth (h< <r), g may be considered a constant.

M
T TF w=Fs
F=Mg, s=h
h w=Mgh
| =

II77777777777777777

Figure 8. Work performed in lifting.
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If an object is pushed up a frictionless inclined plane, the work done is still Mgh

(Fig. 9).
w = Fs /Kgx R
F = Mg sin W/
= _»h h
T o
w = Mgh

Mg sinf@=F

W= Mg
Figure 9. Work performed on a frictionless inclined plane.

For orbital mechanics problems, g varies and must be replaced by the value
Vgig: where the subscripts indicate the beginning and final values of g. In such
cases

w = MVgigh
Another type of work is that work done against inertia. If, in moving from one

point to another, the velocity of a body is changed, work is done. This work against
inertia is computed in the following steps:

w = Fs
but, F = Ma
and 2as = v¢Z — v,?
Ve = Vo2
§ = L ____ "o
2a
so, w = Fs =M 2 = v _ M(@EP — v _ Mv? _ My?

2a 2 2 2

The quantity Mzﬁ is defined as kinetic energy (KE). Therefore, work done

against inertia (if the altitude and the mass remain the same) is equal to the change
in kinetic energy. Energy is defined as the ability to do work, and it is obvious that a
moving body has the ability to do work (for example, a moving hammer’s ability to
drive a nail). A body is also able to do work because of its position or altitude; this
is known as potential energy (PE). Units used to measure energy are similar to
those used to measure work in that both are scalar rather than vector quantities.

The sum of the kinetic and the potential energy of a body is its total mechanical
energy.
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Newton’s Law of Universal Gravitation

Newton published his Principia in 1687 and included in it the law of universal
gravitation, which he had been considering for about twenty years. This law
was based on observations made by Newton. Later work showed that it was
only an approximation, but an extremely good approximation. The law states:
Every particle in the universe attracts every other particle with a force that is
proportional to the product of the masses and inversely proportional to the square
of the distance between the particles. A constant of proportionality, G, termed the
Universal Gravitational Constant, was introduced, and the law was written in this
manner:

Gm1 my

F = 2

The value of G, the Universal Gravitational Constant, was first determined by Ca-
vandish in a classical experiment using a torsion balance. The value of G is quite
small (G = 6.6695 X 1078 cgs units). In most problems the mass of one of the
bodies is quite large. It is convenient, therefore, to combine G and the large mass,
m;, into a new constant, x (mu), which is defined as the gravitational parameter.
This parameter has different values depending upon the value of the large mass, m;.
If m, refers to the earth, the gravitational parameter, u, will apply to all earth satel-
lite problems. However, if the problem concerns satellites of the sun or other large
bodies, u will have a different value based on the mass of that body.

If we now simplify the law of gravitational attraction by combining G and m, and
by adjusting the results for the English engineering unit system, we obtain the fol-
lowing:

3
Gmi = p oo
F = 5~ m (Where F is Ib force and m is slugs)

If this expression is equated to the expression of Newton’s Second Law of
Motion, as it applies in a gravitational field, we see that:

F=mg=——r7-m

and after dividing by the unit mass, m, we obtain:

Thus, the value of g varies inversely as the square of the distance from the
center of the attracting body.

For problems involving earth satellites, the following two constants are nec-
essary for a proper solution:

ft3
sec?

GMeartn = Meartn = 14.08 X 1015
r. (radius of earth) = 20.9 X 108ft
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The formulas must be used with proper concern for the units involved, and
the value given for u applies only to bodies attracted to the earth.

Before applying Newton’s law of universal gravitation to the solution of prob-
lems, it would be well to consider the possible paths that a body in unpowered
flight must follow through space.

CONIC SECTIONS

The conic sections were studied by the Greek mathematicians, and a body of
knowledge has accumulated concerning them. They have assumed new signifi-
cance in the field of astronautics because any free-flight trajectory can be

Hyperbola

— - — -

Hyperbola

Figure 10. Conic sections.

represented by a conic section. The study of conic sections, or conics, is part of
analytic geometry, a branch of mathematics that brings together concepts from
algebra, geometry, and trigonometry.

A conic section is a curve formed when a plane cuts through a right circular
cone at any point except at the vertex, or center. If the plane cuts both sides
of one nappe of the cone, the section is an ellipse (Fig. 10). The circle is a special
case of the ellipse occurring when the plane cuts the cone perpendicularly to the
axis. If the plane cuts the cone in such a way that it is parallel to one of the
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sides of the cone, the section is called a parabola. If the plane cuts both
nappes of the cone, the section is a Ayperbola which has two branches.

In one mathematical sense, all conic sections can be defined in terms of
eccentricity (e). The numerical value of € is an indication of the relative shape
of the conic (rotund or slender) and also an indication of the identity of the
conic.

If the eccentricity is zero, the conic is a circle; if the eccentricity is greater
than zero but less than one, the conic is an ellipse; if the eccentricity is equal
to one, the conic is a parabola; and if the eccentricity is greater than one, the
conic is a hyperbola.

Conic Sections and the Coordinate Systems

In locating orbits or trajectories in space, it is possible to make use of either rec-
tangular (sometimes called Cartesian) or polar coordinates. In dealing with artificial
satellites, it is often more convenient to use polar rather than rectangular coordinates
because the center of the earth can be used both as the origin of the coordinates and
as one of the foci of the ellipse.

Hyperbola, € :é >1

Figure 11.  Rectangular and polar coordinates superimposed on the conic sections.

If rectangular and polar coordinates are superimposed upon a set of conics as
shown in Figure 11, equations of the curves can be derived.
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The formula for the eccentricity of a conic is € = ?rf This ratio is constant for a

specific curve.
In Cartesian coordinates:

r _ VTR
d k—x

Vx4 vy = ek —x)

€=

Squaring both sides gives:
x2 + y? = €(k — x)?
To convert the rectangular coordinates to polar coordinates, substitute as follows:

= rcosv (v is the lower case Greek nu)

y = rsinv
€= — =T
d k —rcosv
ke —recosv = r
r+recosv = ke
r o= ke
1+ ecosv

This result is the general equation for all conics.

Ellipse

The ellipse is the curve traced by a point (P) moving in a plane such that the sum
of its distances from two fixed points (foci) is constant. In the ellipse in Figure 12,
the following are shown: the foci (F and F’); ¢, distance from origin to either focus;
a, distance from origin to either vertex (semimajor axis); 2a, major axis; b, distance
from origin to intercept on y-axis (semiminor axis); 2b, minor axis; and r + 1/, dis-
tances from any point (P) on the ellipse to the respective foci (F and F).

A number of relationships which are very useful in astronautics are derived
from the geometry of the ellipse:

r + 1’ = 2a (atany point on the ellipse)

a? = b?+ cfora = /b?+ c?
b = vii— &
= VE-T

The eccentricity of the ellipse (¢) =~g—. A chord through either focus perpendicu-

2
lar to the major axis is called the latus rectum and its length = —-22—— .
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These relationships can be used to determine the parameters of an elliptical
orbit of a satellite when only the radius of perigee and the radius of apogee
are known. These parameters are important because, as is shown later, they

Y

Figure 12. Ellipse with center at origin of rectangular coordinate system.

are related to the total mechanical energy and total angular momentum of the
satellite. Thereby they offer a means of determining these values through the
simple arithmetic of an ellipse rather than the vector calculus of celestial
mechanics.

Sample problem: A satellite in a transfer orbit has a perigee at 300 NM
above the surface of the earth and an apogee at 19,360 NM. Find a, b, ¢, and €
for the ellipse traced out by this satellite.

Solution:

Since the center of the earth is one focus of the ellipse, first convert the
apogee and perigee to radii by adding the radius of the earth (3440 NM):

radius of perigee r, = altitude of perigee + radius of earth
300 + 3440 = 3740 NM.

altitude of apogee + radius of earth
19,360 + 3440 = 22,800 NM.

Il

radius of apogee r,

Il
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Figure 13. Orbit of an artificial satellite showing radius of perigee and radius of
apogee (not to scale).

With this information, an exaggerated sketch of the ellipse can be made (Fig. 13).
Compare this with Figure 12 to obtain:

I, + r, = major axis = 2a
then 2a = 3740 + 22,800 = 26,540 NM

or a = 2%5-‘.‘9: 13,270 NM

Also from comparing Figures 12 and 13:

c = a—r,
= 13,270 — 3740 = 9530 NM

Since a and ¢ are known, find b from the relationship given:

b = ya—c?
V(1327 X 10%9)% — (.953 X 10%)?

I

or b

b
b

Il

V(1.761 X 108) — (.908 X 108) = 1/.853 X 108
923 X 10* = 9230 NM

I

According to the formula given for eccentricity:

_ C
€= 3
9530
€ = 370 = ‘718

The ellipse is a conic section with eccentricity less than 1 (e < 1).

CircLE. The circle is a special case of an ellipse in which the foci have

merged at the center; thus € = 0. The ellipse relationships can be used for a
circle.
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ENERGY AND MOMENTUM

Once the basic geometry of a trajectory or orbit is understood, the next
subject for investigation is the physics of energy and momentum. From concepts
of linear and angular motion, concepts of linear and angular momenta logically
follow. Once the formulas for computing the specific angular momentum and
the specific mechanical energy of a body in orbit are delineated, then it is possible
to solve for unknown quantities, such as the altitude of the body above the
surface of the earth or the velocity at any point on the orbit. Any body in space
following a free-flight path—whether it is a missile, a satellite, or a natural
body—is governed by the laws of the conservation of specific mechanical energy
and specific angular momentum. Once the value of either of these items is
known at any point along a free-flight trajectory or orbit, then its value is known
at all other points, since the value does not change unless the body is acted upon
by some outside force.

Mechanical Energy

The law of Conservation of Energy states that energy can neither be created
nor destroyed but only converted from one form to another. This law can be
applied to orbital mechanics and restated in this way: The total mechanical
energy of an object in free motion is constant, provided that no external work
is done on or by the system. During reentry, work is done by the system and
some of the mechanical energy is converted to heat. Similarly, during launch,
work is done on the system as the propulsion units give up chemical energy. In
this chapter, only the free-flight portion of the trajectory is considered, and it is
assumed that there is no thrust and no drag.

In order to establish a common understanding about changes in the amount
of energy, it is necessary to agree upon a zero reference point for energy.
Potential energy, or energy due to position, can be, and often is, measured from
sea level. In working with earth-orbiting systems, however, the convention is to
consider a body as having zero potential energy if it is at an infinite distance
from the earth and as having zero kinetic energy if it is absolutely at rest with
respect to the center of the earth. Under these circumstances, the total mechanical
energy (PE + KE) is also equal to zero. If the total mechanical energy is
positive—that is, larger than zero—the body has enough energy to escape from
the earth. If the total mechanical energy is negative—that is, less than zero—
the body does not have enough energy to escape from the earth, and it must
be either in orbit or on a ballistic trajectory.

The formula for 'PE, with the reference system as stated above, is PE =
M Instead of using PE, a specific PE (PE per unit mass) can be used if both

r
sides are divided by m; for example




If a body is at infinity, it has a specific PE equal to — _‘IL = _g_ = 0.

A similar case can be presented for kinetic energy. A body with some velocity
relative to the center of the earth has kinetic energy defined by:
mv?

2
Again, the specific kinetic energy (kinetic energy per unit mass) can be de-
fined as:

KE =

V2
2

o kg - KB _
Specific KE = m =

In general, a body in free motion in space has a particular amount of me-
chanical energy, and this amount is constant because of the conservation of
mechanical energy.

Total Mechanical Energy = KE + PE

A more useful expression is obtained if we define Specific Mechanical Energy,
E, or the Total Mechanical Energy per unit mass. Thus, we can write:

Total Mechanical Energy

E =

m
_ KE , PE
E—m+m
I N
E‘Z r

Specific Mechanical Energy, E, is also conserved in unpowered flight in space.

2

. f . . .
The units of E are set Since the mass term does not appear directly in the

equation, E represents the specific mechanical energy of a body in general.

If the solution to the Specific Mechanical Energy equation yields a negative
value for E, the body is on an elliptical or circular path (nonescape path). If
E is exactly equal to zero, the path is parabolic; this is the minimum energy
escape path. If E is positive, the path is hyperbolic, and the body will also escape
from the earth’s gravitational field.

Although the value of E, once determined, remains constant in free flight, there
is a continuous change in the values of specific kinetic energy and specific po-
tential energy. High velocities nearer the surface of the earth, representing high
specific kinetic energies, are exchanged for greater specific potential energies
as distance from the center of the earth increases. In general, velocity is traded
for altitude; kinetic energy is traded for potential energy. The sum remains
constant.

Linear and Angular Momentum

When a body is in motion, it has momentum. Momentum is the property a
body possesses because of its mass and its velocity. In linear motion, momentum

is expressed as mv and has the units, f00t-Slug
sec
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When a rigid body, such as a flywheel, rotates about a center, it has angular
momentum. Once the flywheel is in motion, its angular momentwm would remain
constant if it were not acted upon by forces such as friction and air resistance.
Similarly, a gyroscope would rotate indefinitely in the absence of friction and air
resistance. Thus, ignoring such losses, angular momentum will remain constant.
In space, it can be assumed that such forces are negligible and that angular
momentum is conserved. This is another tool to use in analyzing orbital systems.

Angular momentum is the product of moment of inertia, I, and the angular
velocity, w. Moment of inertia of a body of mass, m, rotating about a center
at a distance, 1, can be expressed as m r?. The angular momentum is then equal
to m ¥ w.

For convenience in calculations, the term Specific Angular Momentum, H, is
defined as the angular momentum per unit mass. Remembering that the magni-

2
Angular Momentum = m r* @

o v
h w = horizontal
t
g - Ang. Momentum
m

“H=vr (Circular Motion)

1]
Figure 14. Specific angular momentum of a circular orbit.

tude of the instantaneous velocity vector of a body rotating in constant circular
motion about a center with radius r is equal to wr and that the vector is perpen-
dicular to the radius, the expression for specific angular momentum of a circular
orbit can be simplified as shown in Figure 14.

The general application of specific angular momentum to all orbits requires
that the component of velocity perpendicular to the radius vector be used. This
velocity component is defined as

Vy = VCOS ¢

where ¢ is the angle the velocity vector makes with the local horizontal, a line
perpendicular to the radius. In an elliptical orbit, the geometry is as shown in
Figure 15. The body in orbit has a total velocity v which is always tangent to the
flight path.

The formula, H = v r cos ¢, defines the specific angular momentum for all or-
bital cases. The angle ¢ is the flight path angle and is the angle between the local
horizontal and the total velocity vector. It should be noted that the angle ¢ is
equal to zero for circular orbits. Further, in elliptical orbits, ¢ is zero at the
points of apogee and perigee.

The two important formulas that have been presented in this section are those
for E and H. These formulas permit a trajectory or an orbit to be completely
defined from certain basic data:
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\& “w s of 2
E = ) when units of E are Soc?
ft2

sec

H v r cos ¢, when units of H are

I

If v, 1, and ¢ are known for a given trajectory (or orbit) at a given position,
then E and H can be determined. In the absence of outside forces, E and H
are constants; therefore v, r, and ¢ can be determined at any other position on
the trajectory or orbit. Equations for the specific angular momentum and the
specific mechanical energy can be used in practical application to the two-body
problem and to the free-flight portion of the ballistic missile trajectory.

H=vhr

but Vh =V cos¢

“H = vrcos ¢ (General orbit)

Figure 15. Specific angular momentum.

THE TWO-BODY PROBLEM

It is implicit in Newton’s law of universal gravitation that every mass unit
in the universe attracts, and is attracted by, every other mass unit in the universe.
Clearly, small masses at large distances are infinitesimally attracted to each other.
It is neither feasible nor necessary to consider mutual attractions of a large
number of bodies in many astronautics problems. The most frequent problems of
astronautics involve only two interacting bodies: a missile payload, or satellite,
and the earth. In these instances, the sun and moon effects are negligible except
in the case of a space probe, which will be noticeably affected by the moon, if
it passes close to the moon, and which will be controlled by the sun, if it escapes
from the earth’s gravitational field.

Military officers concerned with operational matters are primarily interested
in launching a missile from one point on the earth’s surface to strike another point
on the earth’s surface and in launching earth satellites. In these problems,. the
path followed by the payload is adequately described by considering only two
bodies, the earth and the payload. The problem of two bodies is termed the
two-body problem; its solution dates back to Newton.

It is indeed fortunate that the solution of the two-body trajectory is simple
and straightforward. A general solution to a trajectory involving more than two
bodies does not_exist. Special solutions for these more complex trajectories

usually require machine calculation.
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v

Trajectory
of m

Figure 16. Traiectéry relationships.

The two-body problem is described graphically in Figure 16. A small body,
m,, has a velocity, v, at a distance r from the origin chosen as the center of
mass of a very massive body, m;. The problem is to establish the path followed by
body, m,, or to define its trajectory. This is a typical problem in mechanics—
given the present conditions of a body, what will these conditions be at any
time, t, later? First, we shall find r as a function of v, where v is the polar
angle measured from a reference axis to the radius vector.

At the outset, it should be apparent that the entire trajectory will take place
in the plane defined by the velocity vector and the point origin. There are no
forces causing the body, m,, to move out of this plane; otherwise, the conditions
are not those of a two-body free-flight problem.

In the earlier outline of the laws of conservation of energy and momentum,
the following conditions were established:

v2 I
5T T = E = a constant (1)
H = vr cos ¢ = a constant 2)

Equations (1) and (2) can be combined and, with the aid of the calculus,
the following equation can be derived:

_ H*/u
{ 2
1 + \/l—i————z}ilj cos v

Equation (3) is the equation of a two-body trajectory in polar coordinates.
Earlier, the following equation was given as the equation of any conic section in
polar coordinates, the origin located at a focus:

r o= ke
1+ ecosv (4)

Equations (3) and (4) are of the same form; hence, equation (3) is also the
equation of any conic section (origin at a focus) in terms of the physical constants,
E and H, and the two-body trajectories are then conic sections. This conclusion sub-
stantiates Kepler’s first law. In fact, Kepler’s first law is a special case because an
ellipse is just one form of conic section.
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Since equations (3) and (4) are of the same form, it is possible to equate like
terms, which will lead to relationships between the physical constants, E, H, and u,
and the geometrical constants, €, a, b, and c. Thus:

H2
© &)

ke =

and

- . 2EH?
€ = \/1 + e (6)

Physical Interpretation of the Two-Body Trajectory Equation

Analysis of the two-body trajectory equation will give an understanding of the
physical reaction of a vehicle (small body) under the influence of a planet
(large body).

If E < 0, the trajectory is an ellipse. What is the condition that E be less than
zero? It is simply that the kinetic energy of the small mass, m,, because of its
relatively low velocity, is less than the magnitude of its potential energy. There-
fore, the body cannot possibly go all the way to infinity; that is, it cannot go
to a point where it is no longer attracted by the larger body—where the potential
energy is zero. The smaller mass cannot escape. It must remain “captured” by
the force field of the larger body. Therefore, it will be turned back toward the
larger body, or, more in keeping with the idea of potential energy, it will always
be “falling back” toward the more massive body. When this particular balance
of energy exists, the trajectory is elliptical with one focus coincident with the
center of mass of the larger body. In the actual physical case, the larger body
will have a finite size; that is, it will not be a point mass, and this ellipse may
intersect the surface of the larger body as it does in the case of a ballistic missile.
If the velocity is sufficiently high, and its direction proper, the ellipse may com-
pletely encircle the central body, the condition of a satellite.

If E = 0, the kinetic energy exactly equals the magnitude of the potential
energy, and the small mass, m,, has just enough energy to travel to infinity, away
from the influence of the central body, and come to rest there. The small body
will follow a parabolic path to infinity. The velocity which is associated with this
very special energy level is also very special and is commonly called the “escape
velocity.”

Escape velocity can be calculated by setting E = 0 in the mechanical energy
equation (1) as follows:

V2esc - [

2 ¢ ~E=0
Vi = 2 (X
r
- |2
Vesc—\/ T (7)
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Thus, it can be seen that escape velocity decreases with distance from the
center of the earth. At the earth’s surface,

Vese =

ft? Y
o [ (2) (14.08) (101 secz)]z
I, (20.9) (10°t)

Vese = 36,700 ft/sec.

If the velocity of the small mass exceeds escape velocity, which will be the
case if E > O, it will follow a hyperbolic trajectory to infinity. In practice infinity
is a large distance at which the earth’s attractive force is insignificant, and there
the mass will have some residual velocity. In a mathematical sense, the body
would still have velocity at infinity. In a physical sense, it would have velocity
relative to the earth at any large distance from the earth.

Considering the sounding rocket, only the straight-line, degenerate conic is a

possible trajectory. But, again, the value of E will determine whether escape is
possible; that is, if E < O, the straight-line trajectory cannot extend to infinity.
IfE = Oor E > O, the straight line will extend to infinity.
Example Problem: The first U.S. “moon shot,” the Pioneer I, attained a height
of approximately 61,410 NM above the earth’s surface. Assuming that the
Pioneer had been a sounding rocket (a rocket fired vertically), and assuming
a spherical, nonrotating earth without atmosphere, calculate the following:

a. B (total specific energy)

b. Impact velocity (earth’s surface)

Solution: Given
(a) Atapogee (greatest distance from earth):
Altitude (above earth’s surface) = 61,410 NM
Earth radius = 3440 NM
Velocity = O (Only for a sounding rocket)
r = altitude + earth’s radius
r = (61,410 + 3440) NM = 64,850 NM

fts
sec?

(14.08) (1015)

[ S -—E—— _— —
. ° 64,850) NM (6080) —1t
( 3 ( NM

= — 3.57 X 107 {t2/sec?

Answer

(b) Since the specific energy is constant,
At the earth’s surface:

r = 3440 NM
E = — 357 X 107 ft2/sec?
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=V »
E 2 r
fts

sec?

(14.08) (10 )

(3440) NM (6080) T\%Z*

V2 (mpacty = 2 [(— 3.57 X 107) + (67.4 X 107)] = 2(63.8 X 107)ft?/sec?
V (impacty = 35,700 ft/sec Answer

fe _ v _
~ 357X 1075 = —

This is also the approximate burnout velocity of the vehicle. As the surface
escape velocity is 36,700 ft/sec, it is clear that Pioneer I did not attain escape
velocity, and so it returned to earth.

Elliptical Trajectory Parameters

While parabolic and hyperbolic trajectories, especially the latter, are of interest in
problems of interplanetary travel, elliptical trajectories comprise the ballistic missile
and satellite cases, which are of current military interest. It is important, then, to re-
late the dimensions of an ellipse (a, b, and c) to the physical constants (E, H, and
f+) as was previously done for e.

The relationship, r, +.1, = 2a, was presented earlier. If this equation is applied
to point P in Figure 17,

ke

[ ——
1 +ecosv

(v =0 atP)

Figure 17. Ellipse.

T+ *27° (8)
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But € = —;—; therefore, substituting ¢ = ea into (8),

ke _ _ - _
T+ — 2 €a a(l €)
ke = a(l — €) %)

But from equations (5) and (6),

2EH?
e

ke=H2/p,ande=\/1+

Substituting these relationships into equation (9),

H2=a(1_1_2EH2)

M u?
H2 _ _ 2EH%.
i p?
—1 = 2Ea
14
a = — —‘%-E— (EXTREMELY USEFUL) (10)
= — M
Also a 2(1—2“_— _i_L_) (11)
2 r

From the following equation:

But from equation (9),

H2
1 — €2 = ke = ——
a( €?) € m
Therefore,
b2 _ H?
a4 (12)

Equations (10) and (12) are extremely important relationships; an understand-
ing of them is essential to material that follows on ballistic missiles and satellites. If
injection conditions of speed and radius are fixed, it is clear that a, the semimajor
axis of the elliptical trajectory, becomes fixed, regardless of the value of the flight
path angle at burnout. Equation (10) points out there is a direct relationship be-
tween the size of an orbit and the energy level of the orbiting object. Equation (12)
points out that for a given energy level there is a direct relationship between the
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length of the semi latus rectum of an elliptical trajectory (a shape parameter) and
the specific angular momentum of the orbiting object. This implies that the size and
shape of an elliptical trajectory are determined by the E and H.

Two-Body Trajectory Definitions and Geometry

The general equation of two-body trajectories has now been introduced. Before
proceeding to problem applications it would be well to consider in detail some
commonly used terms and symbols.

First, refer to Figure 18. In general, the point P is called the periapsis and
P’ the apoapsis. If the earth is at point O, the ellipse would then represent the
trajectory of an earth satellite; P is then termed perigee and P’ apogee. If
the sun is at point O, the ellipse would represent a planetary orbit; P is then
called perihelion and P’ aphelion.

In order to explain the use of the angle v, the geometry of satellites will be
discussed briefly. Figure 18 depicts a planetary orbit (not to scale).

In astronomy and celestial mechanics it is standard practice to measure a body’s
position from perihelion point P. There are several reasons for using perihelion,
including the fact that perihelion of any body in the solar system except Mercury
and Venus is closer to the earth’s orbit than is the body’s aphelion. In fact,
for a highly eccentric orbit such as a comet’s, the body would not be visible
at aphelion. In order to conform to accepted practice, then, the angle nu (v),
measured from periapsis, has been introduced. This angle, which is called the
true anomaly, is of considerable importance in time-of-flight calculations.

; (Planet)

Orbit

Figure 18. Sun-centered orbit

The true anomaly, however, does not lend itself well to ballistic missile problems,
as can be seen from the simplified ballistic missile geometry in Figure 19.
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—— Earth

Trajectory -

Figure 19. Ballistic missile trajectory.

In a ballistic missile trajectory, perigee is entirely fictitious. The missile obviously
never traverses the dashed portion of the trajectory. The solid portion of the trajec-
tory is all that is of real interest, and this portion is in the second and third quad-
rants of the angle ». It is convenient then to define an angle 6, measured counter-
clockwise from apogee (apoapsis, in general), such that

v=0+ =m (13)

0 will normally have values in the first and fourth quadrants. From (13), it is clear
that derivatives of » and 6 will be interchangeable. The equation of a conic section
in terms of 8 can be found by substituting (13) into (4),

r = ke — ke
1+ ecosv 1 4+ ecos (8 + =)
r o= ke

T 1 —€cosf "

With this understanding of the relationship between » and 6, it will be convenient
to use » when working with satellite and space trajectories and § when working with

ballistic missiles (see App. C).

EARTH SATELLITES

During their free flight trajectory, satellites and ballistic missiles follow paths
described by the two-body equation. For a satellite to achieve orbit, enough
energy _must be added m vehicle so that the ellipse does not intersect the

gWough energy is added to allow the vehicle
to_escape. Therefore, the ellipse and the circle are the paths of primary ry interest.

The orientation, shape, and size of orbits are important to the accomplishment
of prescribed missions. Therefore, eccentricity (e), major axis (2a), minor axis
(2b), and distance between the foci (2c¢) are of interest. It is necessary to know
the relationships of these geometric values to the orbital parameters in order to

make an analysis of an orbit. For example, it is helpful to remember that:
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r, (radius at perigee) = a — ¢
1, (radius at apogee) = a + ¢
1, + 1, = 2a

e = &

a
a? = b? + ¢?

Specific mechanical energy, E, and specific angular momentum, H, are of primary
concern when elliptical and circular orbits are discussed. If there are no outside
forces acting on a vehicle in an orbit, the specific mechanical energy and the specific
angular momentum will have constant values, regardless of position in the orbit.
This means that if E and H are known at one point in the orbit, they are then known
at each and every other point in the orbit. At a given position if radius 1, speed v,
and flight path angle ¢ are known, E and H can be determined from:

N Y S
E = 2 r 2a
H = vr cos ¢

If the values of E and H are known for a particular orbit, and the speed and
flight path angle at a certain point in the orbit are to be determined, the energy
equation can be solved for v, and then the angular momentum equation can
be solved for ¢.

The equations for the speed in circular and elliptical orbits are important.
The equation for circular speed is:

= ~
v =

The equation for elliptical speed is:

Another equation that is important in the analysis of orbits is the equation
for orbital period. For a circular orbit the distance around is the circumference
of the circle which is 27rr. Therefore, the period, which is equal to the distance
around divided by the speed, is this:

Now, substitute for v the speed in circular orbit:
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= 42—
v = 4L

27t
\/_M_
r
Multiply numerator and denominator of the right hand side by /r:

p = _2m VI 2qr32

TV

Using the principle of Kepler’s third law, replace r by the mean distance from
the focus, which is equal to the semimajor axis a, and the equation becomes:

27rad/?
Vi
2538 2
42 Sinceiw—— is a constant, P? is proportional

. _q5 S€C? 3 _
to a3, and for earth satellites P2 = { 2.805 X 10-15 i (a)8. Or, P =

3
(5.30 X 108 22\ (52,

P =

Squaring both sides, P? =

3
ft?

Problem: Initial data from Friendship 7 indicated that the booster burned out
at a perigee altitude of 100 statute miles, speed of 25,700 ft/sec, and flight path
angle of 0°. Determine the speed and height at apogee, and the period.

Given*: h, = 100SM = .5 X 108 {t re = 20.9 X 108t
Vo = 25,700 ft/sec
(;bbo = Oo

Find: v,, h,, P

Figure 20. Orbit of Friendship 7 (not to scale).

* Even though Pro = 0°, if burnout altitude were not given as perigee altitude, you would have to de-

termine if this were perigee or apogee. To do this, you would compute the circular speed for the given
burnout altitude and compare this with the actual speed. If the circular speed is greater than the actual,
burnout was at apogee; if the circular speed was less than the actual speed, burnout was at perigee.
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Solution:

B oo m _ (257 X109 14.08 X 10%
3 r ) (209 + 5) X 107
= (3.31 X 10°) — (6.58 X 108) = —3.27 X 108
= P — _ M _ _—14.08 X 10%®
but E = — —>-; 2 E 327 X 10°
= 43.1 X 10

From Figure 20,1, + r, = 2a

SI, = 2a -1, = (43.1 — 21.4) X 108

= 21.7 X 10¢
hy=r1,—r. = (21.7 — 209) X 108 = .8 X 106 ft
= 151 sm Answer
H, = H,
VoIp = VuI, Vy, = Y%E_g
_ (257 X 104 (214 X 108 ..
Va = 21.7 X 106 - 25,400 ft/SeC
= 17,300 mph  Answer
2403 2
P2 = ”"4*7":,,3”“ = (2.805 X 10-15) (21.6 X 106 ft)? Sfet‘_i,

= 28.1 X 108 sec?
P = 530 X 10%sec = 88.3 min Ans.

It is interesting to compare the computed apogee and period results with the
actual orbit (later data gave a higher accuracy for burnout conditions):

Item Actual figures Computed figures
Vbo e 25,728 ft/sec 25,700 ft/sec
Boo oo 97.695 SM 100 SM

he 158.85 SM 151 SM
P 88.483 min 88.3 min

Note that using three significant figures results in h, = .5 X 10°® ft, about 94
SM. Such errors are common using slide rule accuracy, but this problem does
illustrate the techniques used.

From the foregoing problem, it is evident that the principles and relatively
simple algebraic expressions presented thus far are extremely important. They
enable one to analyze a trajectory or orbit rather completely—with a slide rule
for academic or generalized discussion purposes, or with a digital computer for
system design and operation. The discussion has been, however, confined to the
two dimensional orbital plane. Before discussing some of the more interesting
facets of orbital mechanics, it is necessary to properly locate a payload in three

dimensions.
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LOCATING BODIES IN SPACE

In one of the coordinate systems for space used by engineers and scientists,
the origin is the center of the earth. This is a logical choice since the center of
the earth is a focus for all earth orbits.

With the center of the coordinate systems established, a reference frame is
required on which angular measurements can be made with respect to the center.
The reference frame should be regular in shape, and it should be fixed in space.
A sphere satisfies the requirement of a regular shape. The sphere of the earth
would be a handy reference if it were fixed in space, but it rotates constantly.
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Orbit Trace

Figure 21. Celestial Sphere.
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TO THE FIRST
POINT OF ARIES (7)

Figure 22. The vernal equinox.

Therefore, the celestial sphere is used to satisfy the requirement for a reference
frame. This is a nonrotating sphere of infinite radius whose center coincides with
the center of the earth and whose surface contains the projection of the celestial
bOdleS es as they appear in the sky (Flg 21). The celestial equator is a pro;ectlon

pro;ected on the celestial sphere by extending the plane of the oribt to its inter-
section with the celestlal | sphere.

After the center of the system and the celestial equator have been defined,
a reference is required as a starting point for position measurements. This point,
determined at the instant winter changes into spring, is found by passing a line
from the center of the earth through the center of the sun to the celestial equator,
and is called the vernal equinox (Fig. 22).

After the references for the coordinate system have been established, the orbit
itself must be located. The first item of importance is right ascension (Q) of the
ascending node, which is defined as the arc of the celestial equator measured
eastward from the vernal equinox to the ascending node (Fig. 21). The ascend-
ing node is the point where the projection of the satellite path crosses the celestial
equator from south to north. In other words, right ascension of the ascending
node is the angle measured eastward from the first point of Aries to the point
where the satellite crosses the equator from south to north.

The next item of importance is the angle the path of the orbit makes with the
equator. This is the angle of inclination (i), which is defined as the angle that
the plane of the orbit makes with the plane of the equator, measured counter-
clockwise from the equator at the ascending node. Equatorial orbits have i = 0°;
posigrade orbits have i = 0° to 90°; polar orbits have i = 90°; and retrograde
orbits have i= 90° to 180°,
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To describe the orbit further, the perigee is located. The angular measurement
from the ascending node to the perigee, measured along the path of the orbit in
the direction of motion, is called the argument of perigee (@ ).
~If, in addition to the coordinates of the orbit, a time of either perigee or right

ascension of the ascending node is known, along with the eccentricity and the
major axis of the orbit, the exact position and velocity of the satellite can be
determined at any time. Six quantities (right ascension, inclination, argument of
perigee, eccentricity, major axis, and epoch time at either perigee or ascending
node) form a convenient grouping of the minimum information necessary to
describe the orbital path as well as the position of a satellite at any time. They
constitute one set of orbital elements, known as the Breakwell Set of Keplerian
Elements.

Orbital Plane

Another interesting facet of earth satellites concerns the orbital plane. There
is a relationship between the launch site and the possible orbital planes. This
restriction arises from the fact that the center of the earth must be a focus of
the orbit and, therefore, must lie in the orbital plane.

The inclination of the orbital plane, i, to the equatorial plane is determined
by the following formula: cos i (inclination) = cos (latitude) sin (azimuth) where
the azimuth is the heading of the vehicle measured clockwise from true north.

As an example, a satellite launched from Cape Kennedy and injected at 30° N on
a heading due east (Azimuth 90°) will lie in an orbital plane which is inclined 30°
to the equatorial plane.

cos i = (cos latitude) (sin azimuth)
= cos 30° sin 90°
cos i = cos 30°
i = 30°

It can be deduced from the above that the minimum orbital plane inclination for a
direct (no dog leg or maneuvering) injection will be closely defined by the latitude
of the launch site. All launch sites, thereby, will permit direct injections at inclina-
tion angles from that minimum (the approximate latitude of the launch site) to
polar orbits (plus retrograde supplements), provided there were no geographic re-
strictions on launch azimuth, such as range safety limitations. For example, direct
injections from Vandenberg AFB (35°N) would permit inclination angles from
about 35° to 145°.

Once the inclination of the orbital plane is defined, the ground track can be dis-
cussed.
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SATELLITE GROUND TRACKS

great c1rc1e (Fig. 23).

- —

Figure 23. Satellite ground track geometry.

A satellite’s ground track is formed by the intersection of the surface of the

earth and a line between the center of the earth and the satelhte As the space
vehlcle moves in its orbit, this mtersectlon ‘traces out a path on the” ground below

There are five primary factors which affect the ground track of a satellite
moving along a free flight trajectory. These are:

1. Injection point

2. Inclination angle (i)
3. Period (P)
4, Eccentricity (e)
5. Argument of Perigee (@)

Of the above, the injection point simply determines the point on the surface from
which the ground track begins, following orbital injection of the satellite. Inclination
angle has been discussed in the previous section and will be treated below in further
detail. Period, eccentricity, and argument of perigee each affect the ground track,
but it is often difficult to isolate the effect of any one of the three. Therefore, only

general remarks regarding the three factors will be made, rather than an intricate
mathematical treatment.

If the study of satellite ground tracks is predicated upon a nonrotating earth,
the track of a satellite in a circular orbit is easy to visualize. When the satellite’s

orbit is in the equatorial plane, the ground track coincides with the equator
(Fig. 24).
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Figure 24, Equatorial track.

If the plane of the orbit is inclined to the equatorial plane, the ground track
moves north and south of the equator. It moves between the limits of latitude
equal to the inclination of its orbital plane (Fig. 25). A satellite in either circular
or elliptical orbit will trace out a path over the earth between these same limits
of latitude, determined by the inclination angle. However, the satellite in elliptical
orbit will, with one exception, remain north or south of the equator for unequal
periods of time. This exception occurs when the major or long axis of the orbit
lies in the equatorial plane.

inclination

Figure 25. North-South travel limits.

The inclination of an orbit is determined by both the latitude of the vehicle and
the direction of the vehicle’s velocity at the time of injection or entry into orbit.
That is, the cosine of the inclination angle equals the cosine of the latitude times
the sine of the azimuth (when the azimuth is measured from north). The mini-
mum inclination which an orbital plane can be made to assume is the number of
degrees of latitude at which injection occurs. This minimum inclination occurs
when the direction of the vehicle’s velocity is due east or west at the time of in-
jection. If the vehicle’s direction at injection into orbit is any direction other than
east or west, the inclination of the orbital plane will be increased (Fig. 26).
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Figure 26. Injection-inclination geometry.

On a flat map of the earth, satellite ground tracks appear to have different
shapes than on a sphere. The ground track for a vehicle in an inclined circular
or elliptical orbit appears as a sinusoidal trace with North-South limits equal to
the inclination of the orbital plane (Fig. 27).
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Figure 27. Ground track on flat, non-rotating earth map.

When the earth’s rotation is considered, visualizing a satellite’s ground track
becomes more complex. A point on the equator moves from west to east more
rapidly than do points north and south of the equator. Their speeds are the
speed of a point on the equator times the cosine of their latitude. Satellites in
circular orbit travel at a constant speed. However, when the orbits are inclined
to the equator, the component of satellite velocity which is effective in an easterly
or westerly direction varies continously throughout the orbital trace (Fig. 28).
As the satellite crosses the equator, its easterly or westerly component of velocity
is its instantaneous total velocity times the cosine of its angle of inclination.
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Figure 28. Effective East/West component of satellite velocity.

When it is at the most northerly or southerly portion of its orbit, its easterly or
westerly component is equal to its total instantaneous velocity.

In elliptical orbits only the horizontal velocity component contributes to the
satellite’s ground track. Further complication results because the inertial or ab-
solute speed of the satellite varies throughout the elliptical path (Fig. 29).

Because the ground track is dependent upon the relative motion between the
satellite and the earth, the visualization of ground tracks becomes quite compli-
cated. Earth rotation causes each successive track of a satellite in a near earth
orbit to cross the equator west of the preceding track (Fig. 30). This westerly
regression is equal to the period of the satellite times the rotational speed of the
earth. The regression is more clearly seen if angular speed is considered. The
earth’s angular speed of rotation is 15°/hour. The number of degrees of regres-
sion (in terms of a shift in longitude) can be determined by multiplying the
period of the satellite by 15° /hour, the angular speed of the earth. If the altitude
of a satellite is increased, thereby increasing the time required to complete one
revolution in the orbit, the distance between successive crossings of the equator
increases.

Figure 29. Variation of velocity magnitude in an elliptical orbit.
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Figure 30. Ground track regression due to earth rotation.

Again, using a flat map of the earth, the track of a satellite in circular orbit (with
a period of less than 20 hrs) appears as a series of sinusoidal traces, each succes-
sively displaced to the west (Fig. 31).

The ground track of a satellite in elliptical orbit results in a series of irregular
traces on a flat map which have one lobe larger than the other. The lobes are
compressed by an amount which depends on orbital time, are altered in shape
by the combined factors (inclination, eccentricity, period, and location of perigee),
and successive traces are displaced to the west (Fig. 32).

Some satellites follow orbits that have particularly interesting ground tracks.
A satellite with a 24-hour period of revolution is one such case. If this satellite is
in a circular orbit in the equatorial plane, it is often referred to as a synchronous
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Figure 31. Westward regression of sinusoidal tracks.
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Figure 32. Westward regression of irregular tracks.

satellite; its trace is a single point. If it orbits in the polar plane; it will complete
half of its orbit while the earth is rotating halfway ‘about its axis. The ‘result is a
trace which crosses a single point on the equator as the satellite crosses t ‘the

equator “heading north and south. The complete ground frack forms a flgure elght

If the plane of the circular Ol‘blt is inclined @ smaller angles to the equator,

O

the flgure eights are correspondmgly smaﬂer (Fig. 33).

L —

Figure 33. Figure eights for inclinations less than polar,

The shape of the figure eight may be altered by placing a satellite in an
elliptical flight path. The eccentricity of the ellipse changes the relative size of
the loops of the figure eight. If eccentricity and inclination are fixed, then changing
the location of perigee will vary the shape and orientation of the figure eight as
shown in Fig. 34. The longitude of perigee is, of course, determined by the con-
ditions and geographical location of injection into the 24-hour orbit. However, the
latitude of perigee is fixed by the inclination of the orbital plane (i), and the argu-
ment of perigee (w):

Sin (latitude of perigee) = sinisin @

Apogee is located on the same meridian as perigee and is at the same degree of
Jatitude but in the opposite hemisphere.

Circular ground tracks similar to the one shown in Fig. 34(g) have been
proposed in certain navigation satellite concepts. In this case with apogee in the
northern hemisphere, a multiple satellite system using this type of ground track
might be used for supersonic aircraft navigation in the North Atlantic.
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Eccentricity (¢) = .6
Inclination (i) = 60°
Argument of Perigee (w) = As Stated

w-0 L =0° |, wess W L =37.75°N
p .
Perigee
" ‘ r Perigee & T
" Apogee
Apogee
g-au ﬂn—é
(a) (b)
w0 #] L =60°N wenzst e b = 37.75°N
P
Perigee
] Perigee
| Longltots Oug) . - . \ . Longiiug 10ug)
Apogee
* Apogee i
(c) (d)

Figure 34. Variation of elliptical, 24-hour track with movement of perigee.
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Eccentricity (¢) = .6
Inclination (i) = 60°
Argument of Perigee (w) = As Stated

w-g0° L = 0° iu w-225° L =37.75°s o
Apogee
- Perigee & Apogee
(e) )
— o
w=270° L = 60°8 - wense o Ly = 377578
Apogee
/ | Apogee
K i Perigee
Perigee _'“ |
;El'-ﬂ 3 =
i
(9) (h)

Figure 34. Variation of elliptical, 24-hour track with movement of perigee, continued.
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If a satellite is in an orbit with a period much greater than the earth’s twenty
four hour period of rotation, the satellite appears as a point in space under which
the earth rotates. If the orbit is in the equatorial plane, the trace is a line on the
equator moving to the west. If the orbit is inclined to the equator, its earth track
will appear to be a continuous trace wound around the earth like a spiral between
latitude limits equal to its angle of inclination (Fig. 35). An example of this
phenomena is the ground track of the moon.

It should now be clear that there is an almost limitless variety of satellite ground
tracks. To obtain a particular track, it is only necessary that the proper orbit be
selected. If changes are made in the inclination of an orbital plane to the
equator, if its period is varied, if the eccentricity is controlled, or, if the location
or perigee is specified, many different ground tracks can be achieved.

s

Figure 35. Track for inclined orbit with period greater than one day.

SPACE MANEUVERS

One characteristic of satellites is that their orbits are basically stable in inertial
space. This stability is often an advantage, but it can also pose problems. Space
operations such as resupply, rendezvous, and interception may require that the
orbits of space vehicles be changed. Such changes are usually changes in orbital
altitude, orbital plane (inclination), or both. In this section some methods of
maneuvering in space will be reviewed.

Altitude Change

When a satellite or space vehicle is to have its orbit changed in_altitude, addi-
tional energy is required. This is true whether the altitude is increased or de-

creased. The classxc example of changing the orbital altitude of a satellite is the
HOHMAN \ '
" The Hohmann transfer is_a two-impulse maneuver between two circular,

copla rbxts For most practical problems, this method uses the least amount
: is known as a ‘minimum energy transfer. The path of the transfer
follows an elhpse whlch is cotangentxal to the two cn'cular orbits (Fig. 36)
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In accomplishing a Hohmann transfer, two_applications of thrust are required.
Each application of thrust changes the speed of the vehicle and places it into a
new orbit. Obviously both the direction and magnitude of the velocity change, Av,

Ay

Target
orbit

Transfer
ellipse

Initial
orbit

Figure 36

must be accurately controlled for a precise maneuver. If an increase in altitude is
desired, the point of departure becomes the perigee of the transfer ellipse; the
point of injection to the higher circular orbit becomes the apogee of the transfer
ellipse. (For the transfer ellipse, 2a = r; + r;.) To lower altitude, the reverse
is true. The point of departure will be the apogee of the transfer ellipse.

In general, the process for determining the total increment of velocity, Av,
required to complete a Hohmann transfer can be divided into seven steps.

(1) Determine the velocity the vehicle has in the initial orbit.

Vc1='\/::

(2) Determine the velocity required at the initial point in the transfer orbit.

v = 28 A
I a

(3) Solve for the vector difference between the velocities found in steps 1 and 2.

(4) Find the velocity the vehicle has at the final point in the transfer ellipse.

2 B oy = T

Ve = T2 a I
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(5) Compute the velocity required to keep the vehicle in the final orbit.

ch='\/l’€:

(6) Find the vector difference between the velocities found in steps 4 and 5.

(7) Find the total Av for the maneuver by adding the Av from step 3 to the Av from
step 6.

Target Orbit

Initial
orbit

Transfer
ellipse

Figure 37

From a practical point, once the required Av is known, the amount of propellant
required for the maneuver can be computed from

Av _ ln( W, ) = 1n mass ratio
Ing w
as discussed in Chapter 3.

There are, of course, other ways to accomplish an altitude change. One such
method is the Fast Transfer useful when time is a factor. h

In the Fast Transfer, the transfer ellipse is not cotangcnnal to the final orbit
but crosses it at an angle (Fig. 37). Again the Av is applied in two increments,
but Av,, applied at the intersection of the transfer ellipse and the target orbit,
must achieve the desired final velocity in the proper direction. The steps for
calculating the required Av are similar to those for the Hohmann transfer, noting
that velocity differences must be treated as vectorial quantities. For the same
altitude change the fast transfer requires more Av.

Other methods of changing altitudes are discussed in other texts on astro-
nautics. The procedures are similar to those discussed here. The magnitude and
direction of the velocity vector remains the critical factor.
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Plane Change

Changing..the. orbital plane of a satellite also requires the expenditure of
energy. This is apparent if the vector diagram representing two circular orbits
of the same altitude is examined, the only difference being in their inclinations:

2

Polar orbit
Figure 38

In this case, the orbital speeds, v; and vs, are equal except that they are 90°
to each other. Transferring from the polar orbit to the equatorial orbit would
require the Av represented by the dashed arrow. For a 90° plane change (an
extreme case) the Av exceeds the existing orbital speed. It should be noted that
a change from one plane to another can only be accomplished at the intersection
of the two planes. ‘ Sl piTied O e S .

‘The Av required to change the orbital plane any specified amount can be deter-
mined by examining the vectors involved. The problem is solvable by use of
the Law of Cosines. For example, if v; represents the existing orbital velocity,
v, the final orbital velocity, and « the desired plane change angle,* then:

Av

A J

2 2 2
Av® = ve 4 v° -
1 > 2v1 v, Cos ot

Figure 39

If only the plane is to be changed, then v; = v, and the problem is simplified.
But, if altitude (or eccentricity) is also to be changed, v, and v, will not be equal.

The amount of Av required to accomplish a plane change is, of course, de-
pendent upon the amount of change desired. It is also a function of the altitude
at which the change is made.

* See appendix B.
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Less Av is required to make a plane change at high altitudes than at low
altitudes because the orbital speed of the vehicle is less at higher altitudes. In
other words, it is more economical, in terms of propellant required, to make
plane changes where the speed of the satellite is low—at apogee, or at high
altitudes.

Combined Maneuvers

If a requirement exists to perform both a plane change and an altitude change,
some economy will result if the operations are combined.

The problem of combining a plane and altitude change is solved quite simply
by considering the vector diagram. For example, it is desired to change the altitude
of a vehicle from 100 NM circular orbit to 1500 NM circular orbit with a plane
change of 10°. Recognizing that the plane change is more economically made at
altitude, the plan is to combine the plane change with injection from the Hoh-
mann transfer ellipse into the 1500 NM circular orbit. A typical Hohmann altitude
change is initiated at a point of intersection of the two planes by increasing the
vehicle’s speed.

At the apogee of the transfer ellipse (1500 NM altitude) the vehicle’s speed
is 19,800 ft/sec. The required circular speed is 21,650 ft/sec. The complete prob-
lem, at apogee, looks like this:

19,800 ft/sec  Speed at apogee of transfer ellipse

P

Speeqd in 1509 Av Req’d

M C.iICUIar Ofbit

21,650 £/ sen
Figure 40

The Av required for the combined maneuver is calculated by use of the Law of
Cosines and is Av = 4,055 ft/sec. It is also necessary to compute the angle at
which the Av is to be applied. This calculation may be accomplished with the
Law of Sines.

PERTURBATIONS

When the orbit of an artificial satellite is calculated by use of the assumptions
given thus far, it will vary slightly from the actual orbit unless corrections are
made to take care of outside forces. These outside forces, known as perturbations,
cause deviations in the orbit from those predxcted by two-body orbltal mechanics.
In order to get a better understandmg of how the satellite’s actual orbit is going
to behave, one must consider the following additional factors:

(1) The earth is not the only source of grav1tat10na1 attraction on the satelhte

space. This effect is greatest at high altitudes (above 20,000 NM).
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(2) The earth is not a spherically homogeneous mass but has a bulge around
the equatonal region. This additional mass causes the gravitational pull on the
satellite not to be directed toward the center of the earth. This is the major
perturbation effect at medium altitudes (between 300 NM and 20,000 NM).

(3) The carth has an atmosphere which causes drag. This effect is most
significant at 1 des (below 300 NM).

Third Body Effects

One cause of perturbations is the introduction of one or more additional
bodies to the system creating a problem involving three or more bodies. Figure
41 shows an exaggerated perturbation, referred to as a hyperbolic encounter.
Initially, the satellite is in orbit 1 about an attracting body such as the earth.

Figure 41. Hyperbolic encounter.

As the satellite approaches the moon, the gravitational influence of the moon
dominates, and the center of the moon becomes the focus instead of the center
of the earth. Since the vehicle approaches the moon with more than escape
velocity, it must leave the moon’s sphere of gravitational influence with greater
than escape velocity. This means that the vehicle’s velocity with respect to the
moon is greater than that required to escape. Therefore, for the short time that
the moon is the attracting body, the vehicle is on a hyperbolic path with respect
to the moon. When the satellite leaves the sphere of influence of the moon, it
switches back to the earth’s sphere of influence and goes into a new elliptical

orbit about the earth. The next time the satellite returns to this region, the
moon will have moved in its orbit, and the satellite, therefore, will now maintain
orbit 2. A hyperbolic encounter is a method of changing the energy level of a
satellite. By proper positioning, it could be used to increase or decrease the
energy of a space vehicle. Of course, the change in energy of the vehicle is
offset by the change in energy of the second body (the moon in the case
_ illustrated).
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Effects of Oblate Earth

Another cause of perturbations is the bulge of the earth at the equator some-
times called the earth’s oblateness. The effect of this oblateness on the satellite
can be seen if we imagine the earth to be made up of a sphere which has an
added belt of mass wrapped around the equatorial region. As shown in Fig. 42,
the primary gravitational attraction F, directed to the center of the earth, will
now be “disturbed” by the much smaller but nevertheless significant attractions
F; and F, directed toward the near and far sides of the equatorial bulge. With
r; smaller than r,, F; will be larger than F,, and the resultant force obtained
by combining F, F;, and F, will now no longer point to the center of the earth
but will be deflected slightly toward the equator on the near side. As the satellite
moves in its orbit the amount of this deflection will change depending on the
vehicle’s relative position and proximity to the equatorial region.

Figure 42. Deviation in force vector caused by the oblateness of the earth

Two perturbations which result from this shift in the gravitational force are:

(1) Regression of the nodes.
(2) Rotation of the line of apsides (major axis) or rotation of perigee.

Regression of the nodes is illustrated in Fig. 43 as a rotation of the plane of
the orbit in space. The resulting effect is that the nodes, both ascending and
descending, move west or east along the equator with each succeeding pass.
The direction of this movement will be opposite to the east or west component
of the satellite’s motion. Satellites in the posigrade orbit (inclinations less than
90°) illustrated in Fig. 43 have easterly components of velocity so that the
nodal regression in this case is to the west. The movement of the nodes will be
reversed for retrograde orbits since they always have a westerly component of
velocity. Figure 44 shows why, for a vehicle traveling west to east, the regression
of the nodes is toward the west. The original track from A to B would cross
the equator at ;. Simplifying the effect of the equatorial bulge to a single
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Figure 43. Regression of the nodes.

impulse at point E, the track is moved so that it crosses the equator at (. At
point F the simplified effect of the bulge is a single impulse down, changing
the orbital path line to the line FD, which would have crossed the equator at (15.
This effect, regression of the nodes, is more pronounced on low-altitude satellites
than high-altitude satellites. In low altitude, low inclination orbits the regression
rate may be as high as 9° per day. Fig. 45 shows how the regression rate
changes for circular orbits at various altitudes and inclination angles. Note
that nodal regression is zero in the polar orbit case. It has no meaning in
equatorial orbits.

Figure 44. Regression of nodes toward the west when vehicle is traveling west to east.
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Satellites requiring sun synchronous orbits (for photography or other reasons)
are an example of how regression of the nodes can be used to practical ad-
vantage in certain situations. In Fig. 46 the satellite is injected into an orbit
passing over the equator on the sunlit side of the earth at local noon (the sun
overhead). This condition initially aligns the orbital plane so that it contains a
line between the earth and sun. The altitude of the near circular orbit deter-
mines the angle of inclination required in order to maintain the sun synchronous
nodal regression rate of approximately one degree per day (360°/year). In
Fig. 45 note the required inclination angles of approximately 95° to 105° for the
altitudes shown. If inclination angle and orbital altitude have been chosen
correctly, then regression of the nodes will rotate the plane of the orbit (change
the angle of right ascension) through 90° every three months as shown in Fig. 46.
Thus, we see that this perturbing phenomenon due to the earth’s equatorial
bulge maintains the desired angle of right ascension which, along with the angle
of inclination, orients the orbital plane within the celestial sphere. Therefore, as
the earth moves in its orbit the desired orientation for best photography is main-
tained without using propellant.

SUMMER

Figure 46. Sun-synchronous orbit.
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Figure 47. Earth’s equatorial bulge changes the argument of perigee.

Rotation of the apsidal line is shown in Figure 47. (The apsidal line is the
line joining apogee and perigee—the major axis.) The cause of this perturba-
tion due to oblateness is difficult to visualize; however, the result is that the
trajectory rotates within the orbita! ~lane about the occupied focus. This rotation
has the effect of shifting the locu..on of perigee, thus changing the argument of
perigee (Figure 21).

This rate of change in the argument of perigee is a function of satellite
altitude and inclination angle. At inclinations of 63.4° and 116.6° the rate of
rotation is zero. Figure 48 illustrates how the apsidal rotation rate varies with
inclination angle for orbits with a 100 NM perigee and different apogee altitudes.
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Figure 48. Apsidal rotation rate per day for orbits with 100 NM perigee altitude.
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Drag Effects

Drag on a satellite will cause a decrease in eccentricity, a decrease in the
major axis, and a rotation of the apsidal line. Figure 49 illustrates the change
in eccentricity and major axis. The original orbit is represented by the curve
A; A, A4, with the focus at F, and a major axis equal to line segment A; A,
Assuming that the drag is concentrated near perigee, the speed at A; eventually
will diminish to circular speed, and the new path will be A; Az A,, with the
major axis decreasing to line segment A; Aj;. After the orbit has decayed to
approximately zero eccentricity (a circle), further decay will result in a nearly
circular spiral with ever-decreasing radius.

Some other causes of perturbations are electromagnetic forces, radiation pres-
sures, solar pressures, and gas-dynamic forces.

Figure 49. Decrease in the eccentricity of a satellite orbit caused by drag.

THE DEORBITING PROBLEM

The general operation of moving a body from an earth orbit to a precise point on
the surface of the earth is a difficult problem. The orbit may be circular or ellipti-
cal, high or low, and inclined at various degrees to the rotational axis of the earth.
The deorbiting maneuver may be the lofted, depressed, or retro approach which is
the only method discussed in this section. Time of flight is a major parameter in
deorbiting and presents one of the more difficult of mathematical problems. But, the
theory developed here is sufficiently general in scope that it may be modified to
solve most problems. The complexity of the problem is reduced in the following sim-
plified illustration of deorbiting from a circular, polar orbit from a point over the
North Pole, by assuming no atmosphere.* The approach and solution will permit
impacting any earth target, provided fuel for retrothrust is no limitation.

* The student may consider the effect of the atmosphere by using the radius of reentry rather than the
radius of the earth, and by then considering the range and time of flight for a specific reentry body. The
solution may also be modified to consider elliptical orbits and inclined orbits.
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Consider a target at 60° north latitude. If the earth could be stopped from rotat-
ing (see Fig. 50)*, with the target in the plane of the circular orbit, then it only
would be necessary to apply a retrovelocity (Av,) to the orbital body so it would
traverse the ellipse shown (arc 1-4) and impact the target. The reentry velocity
magnitude (vy,), equal to the circular speed (v.) minus the retrovelocity (Av,),
would be necessary at apogee (1) to impact any target on the 60° north parallel.
But, the direction of v, would have to be oriented with respect to the earth’s axis so
that it would lie in the plane formed by the earth’s axis and the predicted position of
the target.

Since the earth is rotating at a constant speed, the time of flight (t,) of the orbital
object must be known in order to predict where the target will be at impact. For ex-
ample, when the orbital vehicle is at Point 1 over the North Pole, the target is at
Point 2. During the descent of the payload, however, the target moves to Point 3. In
order to predict Point 3, t, must be known.

Then, if the magnitudes of v., v, and «, the angle between these two vectors, are
known, the Law of Cosines can be used to determine Av,. Application of Av, to v,
insures that v, will have the proper magnitude and direction so that the object will
impact a selected target on a rotating earth.

Deorbiting Velocity

Looking first at the geometry of the problem (Fig. 51), notice that the total prob-
lem lies in one plane. Basically, the radius of the circular orbit (r.) and the latitude
of the target (L) are known. Since the original circular orbit and the bombing trans-
fer ellipse are coplanar and cotangential, the problem begins as a Hohmann transfer.
To determine Av, the rearward velocity increment which must be applied to cause
the object to impact the target can be computed from Av = v, — W, if v, and v,
are known.

73

Ve = I,
vy = 4|2 — B
Ty a
i = = = Ta
Since r, = a + ¢ a(l + €, a T+ e
Then v, = 2[&_“(1+eb)= v (1 — &)
Ty T, Ty
Write the general equation of the conic as ke= r (1 -+ € cos v) and evaluate at
the two known points, r.** and r,, noting that at impact cos v = — cos 8
= — sin L, and at retrofire cos (180°) = —1.

Thenke =1, (1 —¢gsinL) =1, (1 — &)
* 8 figures related to the deorbit problem appear at the end of this section.

* # r, is radius of the earth, but radius of re-entry could be used if desired.
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Solving for ey,

& (fp — resin L) = 1, — 1,

I, — Te
r, — I, sin L

€ =

Note that in order to find €, and, in turn, the magnitude of vy, only the latitude
of the target and the altitude of the circular orbit need be known. Suppose there is a
satellite in a 500 NM circular polar oribit. When the orbital vehicle arrives directly
over the North Pole, it is desired to deorbit an object which will impact at 60° north
latitude. Assuming that the earth has no atmosphere and is nonrotating, what retro-
velocity is necessary?

6 = I, — I, — (23,94 X 10¢ft) — (20.9 X 10°ft)

P I, — T, sin L (23.94 X 108 ft) — (20.9 X 10¢ft) sin 60°
€ = 520
S \/ 12 (1 - &) = 14.08 X 10 ft3/sec? (1 — .520)

b T, b 23.94 X 108 ft

16,790 ft/sec

I

Vb
Av = v, — v, = 24,240 ft/sec — 16,790 ft/sec
Av = 7,450 ft/sec

Looking again at the geometry, note that there is a satellite in a 500 NM circular,
polar orbit with v. = 24,240 ft/sec. A retrovelocity increment, Av, equal to 7,450
ft/sec was applied. This provided a magnitude v, = 16,790 ft/sec so that the object
now follows arc 1-2 and impacts on 60° north latitude.

Figure 52 provides a graph of velocity versus latitude to determine the magnitude
of vy,. The graph is for a specific altitude, for release from over the North Pole, and
for no atmosphere. Included also are more general graphs, Figures 53 and 54.

Deorbit Time of Flight

As the bomb falls from apogee, the target moves toward the east due to earth ro-
tation. Its speed is 1520 cos L ft/sec, so the necessity of accurately computing the
time to bomb, t,, is readily apparent.

First, look at the problem in schematic, Fig. 50. Recall that at the time the vehicle
is over the North Pole at Point 1, the target is at Point 2. Thus, t, must be known so
that the location of Point 3 can be predicted. If the meridian that Point 3 will be on,
and the meridian with which the circular orbit coincides at the instant of deorbit are
known, then the angle a can be determined by subtraction.

There are several methods for computing t, from release to impact. Eqn 10, App
D could be used to determine t " the time of flight for a ballistic missile launched
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from 60° N latitude, with apogee at 500 NM over the North Pole, and impacting at
60° N latitude. This would be the t, to traverse arc 5-1-4 (Fig 50). The actual time

to bomb from apogee would be half this amount. The general time of flight method
is presented here.

t) oy = \/% (uz — esinuy) — (w — esinuy) (App D, Eqn 7)

Since position 1 corresponds to apogee:

u1=7r,sinu1=0
a8 .
Then t, = tjeey = N (ug — & sin uy — )
M
Ta
a =
1+€b
- €O & — sin L
cos U, = —2b 50 _ _& -
1 — € cos 6 1 — ¢ sin L

All of these parameters are familiar except u which is the eccentric anomaly (Fig.
55). If a perpendicular is dropped through the target to the major axis of the ellipse,
it intersects a circle (with the center at C, and the diameter equal to the major axis
of the ellipse) at Point Q. By definition, angle BCQ is u, the eccentric anomaly. The
radius of the circular orbit, r,, is given. Both v, and €, can be calculated from for-
mulas given previously.

Working with the same example that was used to illustrate deorbiting velocity, t,
will be calculated from only two known quantities—the altitude of the satellite and
the latitude of the target. A satellite is in a 500 NM circular, polar orbit. Find the
time of ilight, t, from directly over the North Pole to a target on the 60° north par-
allel:

. — I, —re  _  (23.94 X 10°ft) — (20.9 X 108 ft)
b Ta — fesin L (23.94 X 10%ft) — (20.9 X 10°ft) sin 60°

e = .520

I

. f 15 £43 2 —
\/ i (1 — &) = \/ 14.08 X 105 ft3/sec? (1 .520)

o I 23.94 X 10° ft

v, = 16,790 ft/sec

o T _ 2394 X 109ft _ .
a T+ e 1530 15.78 X 10° ft
cos u; = €y — SinL - .520 - Sin 600 — "'.637

1 —esinL 1 — .520 sin 60°
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Noting u; lies between 180° and 270°:

u, = 360° — 129.6° = 230.4° = 4.084 radians

a® .
t, = \/7 [ut—ebsmut—'n']

_ [(1578 X 10° f)? e .
6= e X1 ) & 14084 — 5205in2304° — 3.1416]

t, = 676 sec = 11.27 min

Figure 56 shows t, in minutes versus a plot of target latitude. Once again it must
be recognized that this chart is for a specific orbital altitude and no atmosphere. See
also the more general graph, Figure 57.

Consider impacting a target at 60° north latitude and 30° east longitude. The
plane of the satellite is coincident with the 70° east meridian. This means that, when
the satellite is at Point 1 and the target is at Point 2, the angle between the target
and orbital plane is 40°. However, the farget is moving. It moves at:

o hr — :
(360°/24 hrs) 0 min .25 deg/min

0. = (11.27 min) (.25 deg/min) = 2.82°
a = 40° — 2.82° = 37.18°

Now apply the Law of Cosines and determine the Av, which must be applied to
Vv, in order to impact the target:

v, = 2U,2H0 ft/sec

7
//\/ a= 37.18° /\/5 = 43,15°
Av2 // \\ /
s v, = 16,790 ft/sec s

yd /Av = 14,860 ft/sec
/ \ 2 ’
a i

Avy, = (W2 + V2 — 2v, v, cos a)1/2

Av, = [(16,790 ft/sec)? + (24,240 ft/sec)? — 2(16,790 ft/sec X 24,240 ft/sec
cos 37.18°)] /2

Ave = [2.82 X 108 + 5.88 X 108 — 6.49 X 108] 1/2
Avy, = [2.21 X 10%] /2 = 14,860 ft/sec
2—-60




Also, the value of angle 8 must be known so that the proper direction of Av, may
be determined. The Law of Sines is preferred for this calculation, although the Law
of Cosines can be used.

. — VpSina
sin 8 —————wsz
. _ 16,790 ft/sec sin 37.18°
sin B 14,860 ft/sec
sin 8 = .6827
B = 43.15°

From the solution of this simplified object-from-orbit problem, it is apparent that
such a calculation is not really simple. Other mathematical approaches and other op-
erational problems are even more difficult. However, the theory presented can be
extended to more difficult cases.

Fuel Requirement
It is also of interest to determine the propellant necessary to perform this maneu-

ver. Assuming an I, = 450 sec (a reasonable figure in the near future) and an in-
itial weight of 10,000 pounds, compute the amount of propellant required, W,:

in (\_WV;“) = Ii,vg = @50 ::éfiggésgtc/secfz) = 1.025
3; = 2.79
w, = 10005 — 3,500 1bs
W, = W; — W, = 6,410 Ibs
This weight of propellant represents -g—‘l’ = 1%%%% = 64.1% of the weight in orbit

‘ prior to maneuvering.
By restricting the plane change (side range) to « = 7.18 degrees, Avy = 7,875
ft/sec, W, = 4,190 Ibs, and W"YB = 41.9%.

1

In summary, recall that the altitude of a satellite in a circular orbit and a time
when the satellite was over the North Pole were given. A target was selected, and no
earth atmosphere was assumed. From the theory, the required velocity for a deorbit-
ing object was calculated, and the position of the target at the time of impact was
predicted. With this information and the use of the laws of sines and cosines, the
magnitude of retrovelocity and the direction to deorbit on target were calculated.
Also, the amount of propellant required was computed.
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Deorbit velocity (Vy) in thousands feet/second
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EQUATIONS PERTAINING TO BODIES IN MOTION

Linear Motion

Angular Motion

=Sf"‘So=AS — 6f“‘00=A0
1. () Vi — At 1. (b) way rp— At
= V+—V, _ Av - O~ 0, _ Aw
2. (a) au, — At 2. (b) auy — At
2 2
30 s=vt+ Bt 30 0= ettt L] gy
2 uniform uniform
4. (@) vi = v, + at acclellrel:iziion 4. (0) o = o, + ot acgglil;};l;iron
5. (a) 2as = v2 — y? 5. (b) 2a8 = w® — w,?
Conversions from Angular Motion to Linear Motion
6. (a =
( ) s 10 7. Ve = __2;)7'1’
b)) v = ro .
= V&
() a = ra 8 a r
Symbols Subscripts
a—Ilinear acceleration av—average
P—period f—final value
r—radius o—original value
s—Ilinear displacement r—radial

t—time interval
v—Ilinear velocity

a—angular acceleration
6—angular displacement

w—angular velocity

t—tangential

SOME USEFUL EQUATIONS OF ORBITAL MECHANICS

1. Eccentricity: €

2. Ellipse:

= S
a
T, + 1, = 2a
a—¢c =1
atc =1
a? = b? + ¢?

Iy — Ip
T, +1p
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3. Specific Mechanical Energy:

E

E

\& I

2 T

SE

4. Specific Angular Momentum:

H

= vrcos¢

5. Two Body Relationships:

Veirele
Vellipse

Vescape

P

P2

6. Variation of g:

7. Law of Cosines:

=\/_E_
r
=\/_2_k°..__£«_
T a
2 —
= % - v

3
2 sec 3
= 2ma? (5.30 X 108 “_:«;“)(a)”i'

uE ft2
— 4ma® _ _15 sec?
= =< = 2.805 X 10~ 22~ 3
W ( e )(a)
. M
=

a2 = b2+ c2 — 2bccos A
Law of Sines:
a b ¢
sinA =~ sinB ~ sinC
8. Constants:
re = 209 X 106 ft
re = 3440 NM
ft3
= 15
7 14.08 X 10 secz’ For earth.
1 NM = 6080 ft
ar radians = 180°
1 radian = 57.3°

9. Inclination of Orbital Plane

cos 1

= cos Lat sin Azimuth
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