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ce is not a new science 

- - 

he next step in the field of celestial mechanics was a giant one made by a 



. It also shows how these ly to the orbits and trajectories use 

odies in space move in accor 

cepts and terms are transferable, 
An understanding of simplified linear 
thorough appreciation of a satellite's 

odies in space are observed to be continuously in motion because t 
in different positions at dif 
use a reference system. Ot 

man in e ground are not 
system. of a reference sy 
first describing movemen 
motion. 

average velocity is represente 

osition, to is the initi 

* The nautical mile (N ) is one minute of a great circle. In this course, use the conversion that 1 N 
6,080 feet = 1.15 statute miles. 



is the time rate of cha of acceleration is one 

described as being uniformly ac 

e average acceleration, over 

specified time interval. A good exa 
free-falling body in a vac 

s been measured 
is usually given t 

me, its units are ft/sec< or mor 
ctually, constant acceleration rare 

can be adapted to situations w 
he following three equations are useful in the solutions of problems involving 

where s is linear displacement, v, is initial linear velocity, vf is final 
a is constant linear acceleration, and t is the time interv 

f a ~ a r t i c l e  moves along the circumference ~ t a  - -- ---- - ~ u a w a n ~ - * ~ ~ s ~ * s ~ ~ M ~ ~ -  *----------*a 

ed, the particle is in uniform circular motio - ---I1*YIw*-m--m- --"- M I _ ~ I 1 ~ ~ - - a ~ * Y * I U ~  -w * * -""-*a- 

ed and direction, the velocity is const 
Xl-am---m*-rIX 1--- --* OIY) B I Y 1  -*~"l-"-**--.--"*"w--" 

rection of motion is changing. Now, ac 
--̂  --X-II(-mm~ *"-- s-*--**-***X-wm **** XI----------- - - - - I Y Y I I ( = - % - W m ~  

rate of change of velocity. Since the velocity in uniform circular mo 
ing, there must be an acceleration. 
motion, that is, the tangential directi 

t, since the original statement assumed t 
ration in the tangential direction must be e 

fore, any acceleration that exists must be perpendicular to the tangential direction, 
or in other words, any acceleration must be in the radial direction (along the 
radius). 

Average speed is equal to the distance traveled divided by the elapsed time. 
or uniform circular motion, the distance in one lap around the circle is 2nr, 

which is covered in one period (P).  he time required to make one 
trip around the circumference of th herefore, the tangential speed 

vt = n uniform circular motion, the particle stays the same distance from 

the center, therefore, radial speed, v, = 0. as already been shown that 

; and it will be s 



is concerned with linear d lacement, s; veloc 



Computations in the calculus are base 
cording to the formal definition, the variable the constant 1 as 
a limit when the successive values of  x are su 
ence x - I ultimately becomes and remains 
ber, however small. 

polygon inscribed in a circ 
ber of sides of the polygon approac 

he area of a triangle is 

he limit of 1/2 nbh as n approaches infinity is equa 

irn area of the polygon = - - (Zrr) r 
2 

Now, an increment is the difference in 
above, the increase in area when the inscri 

one is an increment of area; that is, 
a of an inscribed triangle is an increment of 

which is read "delta x," and 

2-5 



In the previous section the radial acceleration for uniform circular motion was 

given as a, = *. With the concepts of an increment and a limit, the value for 
r 

radial acceleration can be determined mathematically. In Figure 3, an increment of 
arc has been expanded to permit closer examination. The length r is the distance 
from the center of the circle to the circumference. The horizontal distance v,At is 

Figure 3. An increment of an arc (left) and the increment expanded (right) to show 
change in velocity. 

the distance a body in uniform motion with a velocity v, would move in the ti 
However, at the completion of the increment of time the body is not at point 
at point B, because this is uniform circular motion. The distance from A 

equal to v, A t + a'. where the subscript r refers to radial. 
2 

form circular motion v, = 0. Therefore, the distance A is equal to *. Now, 
2 

applying the Pythagorean theorem to the triangle, 

Subtracting r2 from both sides, 

Dividing both sides by 



o find the instantaneous values 

As was to be demonstrate 

his text does not attempt to teach the processes of differentiating and integrating, 
but its purpose is to give e student some understanding of how the calculus is use 
in the study of space. 

he definition of e derivative of y wi 

able of derivatives, and 

one in The Engin dson on pages 3 1 and 32. 
he average velocity over a period of time, as given in the previous section, is: 

Usually the average velocity is not of direct value in analysis, 
neous velocity is. The speedometer in a car measures instantaneou 
motorist is arrested for speeding, it is because of his instantaneous 
average velocity. f s is the path of a particle, its instantaneous velocity is equal to: 

oves so that its distance from the origin at 
its average and final, velocity and acceler 

sf-% So = 
tf - t o  sf = 27 

- 2 7 - 0  
V ~ Y  - = 9 Answer 3 - 0  

om page 32 of The Engineer's Manual: 

V, - V, = 27 - 0 
3 

= 9 Answer 
tf - to 
- -  d t 
dt dt = 2 ( 3 t 2 - 9 3 -  = 6t = 18 Answer 



use of differential calculus, final or instantaneous values for ve- 
on can be determined, but only average values can be deter- 

the previous section. 
acceleration were given as af = 6t, the inst 
be determined by the process of htegration. 
ss that is the inverse of differential calc 

d vf after 3 secon rawn with acceleration 
d time on the horizontal axis, the area un r the curve is the 
ration gives the su of all the individual 

t+O, the area of the rectangle 
the velocity in this problem. 

m the table of fundamental theorems on int 



rocesses of integration an ifferentiation of variab 
utation of velocity and acceleration throug 
tion taken up in the branch of ynamics known as 
ces causing the motion elongs to another b 

Natural bodies in space follow the basic laws of 
Newton's universal law of gravitation an 

e basic laws and making use of calculus (also 
explain and prove Kepler's three laws of 
review Kepler's laws before stating Newto 

e laws upon whic 
and Newton's three laws of mo 
celestial mechanics. 

rom his observations an 
around the sun in an orbit th 

law to take intoeaccount erturbing influences. As t 
satellites, we must assume that perturbing influences li e air resistance, 

erical (pear shape) sha 
bodies are negligible. 

tellite is an ellipse with the 
---=--- "*----*=rurrr- err.& arxi- 

allistic missile, not includ 
se, but one that happens to intersect t 

er's second law, o law of areas, states: Every planet 
joining it to the center of the sun sweeps over equal 

orbital systems, the law should be restate us: Every satellite 
the line joining it with the center of- the e 

e orbit is circular, t e application of Ke 

satellite at a constant distance from t 
for example, sweep out eight equal areas in the total time 
of these eight areas is equal and symmetrical. According to  Kepler9s secon 
the time required to swee out each of the eight areas is the sa 

longer than the arc of Sector V. herefore, since the ra 

* The terms "trajectory" and "orbit" are sometimes used interchangeably. Use of the term "trajectory" 
came to  astronautics from ballistics, the science of the motion of projectiles shot from artillery or  firearms, 
or  of bombs dropped from aircraft. The term "orbit" is used in referring to natural bodies, spacecraft, and 
manmade satellites. It is the path made by a body in its revolution about another body, as by a planet about 
the sun or by an artificial satellite about the earth. 



plied to a circular orbit. 

Kepler's third law, also nown as the harmonic law, states: 
the sidereal periods* of  an two planets are to each other as th 

n distances from the center of the sun. 
o fit an earth orbital system, Ke law should be restate 

he squares of the periods of the orbits of two satellites are proportional to each 
other as the cubes of their mean distances from the- center of the ear 

* The period of a planet about the sun. 



mean distance is t 
average of the di 

hile Kepler was working out 
talian physicist an 
odies. Newton dr 
is laws of motion. 

st law states: Every body continues in a state of rest 
motion in a straight line, unless it is compelled to change that s 
imposed upon it. 
body in motion te 

his law is sometimes refe 
law of motion as stated by Newton says 

to a body, the time rate of chan of momentum is tional to, and in the 
the mass remains 

law of motion is 
reaction that is equ 

equation : 

he following are used in the metric system of measure 

(dynes) = m (grams) times a (,centimeters 

(Newtons) = m (ki arns) times a (meters per second 

he most common force e e measure of the 
body's gravitational attraction to the ea 

center of the ea ny force, is a vector 
ly force concerne ulting acceleration is 



normally called "g," the acceleration due to gravity. 
Newton's Second Law can then be written: 

is equation can be used as a definition of mass. he value of g near the 
surface of the earth is approximately 32.2 feet per se d per second; ''"g9 is a 
vector quantity since it is directed always toward the center of the earth. 
weight, W, is expressed in pounds, rearranging gives: 

The unit of mass in this equation is called a "slug." Note that mass is a scalar 
quantity* and is an inherent property of the amount of matter in a bo 
is independent of the gravitational field, whereas weight is dependent 
field, the position in the field, and the mass of the body being wei 

nally, Newton's Second aw may now be written: 

(slugs) times a (ft/sec2) 

following example shows the use of t is system of units an 

weighs 161 poun 

ind: (a)  its mass in slugs. 

(b)  the force necessary to just lift it vertically from a surface. 

(c) the force necessary to accelerate it 10 ft/sec2 on a smoot 
surf ace. 

(e) its mass on the moon. 

Solution: 

- - 161 pounds = 5 slug 
32.2 ft/sec2 

g = (5  slugs) (32.2 ft/sec2) = 1 
t be applied upwards, in the direct 

a = ( 5  slugs) ( 

* A scalar quantity has magnitude only, in contrast to a vector quantity which has magnitude and direction. 



is last solution is, of course, to ree asize that mass is 
shown later that the 
is significant to not 

remains constant. 
g 

ork, w, is defined as the product of the co 
motion and the distance moved. 
distance, s, in the direction the fo 

ork is a scalar as distinguis 

orrned as a force ( 

To do work against gravity, a force must be applied to overcome the weig 
which is the force caused by gravitational acceleration, g. 

f the body is lifted a height h ( ig. 8) and friction is negligi- 
h. For problems in which h is mich less than the radius from the ten- 

ter of the earth (h<  <r) ,  g may be considered a constant. 



f an object is pushed up a frictionless inclined plane, the work done is still 
(Fig. 9). 

Mg sin 

ork performed on a frictionless inclined plane. 

or orbital mechanics problems, g varies and must be replaced by the value 
V K w h e r e  the subscripts indicate the beginning and final values of g. 
cases 

Another type of work is that work done against inertia. f,  in moving from one 
point to another, the velocity of a body is changed, work is done. 
inertia is computed in the following steps: 

v so, w = Fs = -f - 
2 2 2 

is defined as kinetic energy (K 

and the mass remain the s 
fined as the ability to do 

tential energy of a 
energy. 



on' 

Newton published his Principia in 1 
gravitation, which he had been cons 
was based on observations made by Newton. Later 
only an approximation, but an extremely good appro 
Every particle in the universe attracts every other particle with ar force that is 
proportional to the product of the masses and inversely proportional to the square 
of the distance between the particles. A constant of proportionality, 6 ,  termed the 

a1 Gravitational Constant, was introduced, and t e law was written in this 

The value of 6, the Universal Gravitational Cons 
vandish in a classical experiment using a torsion 
small (6 = 6.6695 lov8 cgs units). 
bodies is quite large. is convenient, the 

, into a new constant, p (mu), which is defined as the gravitational parameter. 
is parameter has different values depending upon the value of the large mass, ml. 
ml refers to the earth, the gravitational parameter, p,  will apply to all earth satel- 

wever, if the problem concerns satellites of the sun or other 
a different value based on the mass of that body. 

f we now simplify the law of avitational attraction by co ining G and ml an 
by adjusting the results for the glish engineering unit syst we obtain the fo 
lowing : 

this expression is equated to the expressio 
on, as it applies in a gravitational field, we see 

and after dividing by the unit mass, m, we obtain: 

Thus, the value of g varies inversely as the square of the distance from the 
center of the attracting body. 

or problems involving earth 
essary for a proper solution: 

G mearth 

re (radius of earth) 

satellites, the following two constants are nec- 



he formulas must be used with proper concern for the units involve 
alue given for p applies only to bodies attracted to the earth. 

efore applying Newton's law of universal gravitatio to the solution of prob- 
lems, it would be well to consider the possible paths at a body in unpowered 
flight must follow through space. 

The conic sections were studied by the Greek mathematicians, and a body of 
knowledge has accumulated concerning them. They have assumed new signifi- 
cance in the field of astronautics because any free-flight trajectory can be 



sides of the cone, the section is called a parabola. e plane cuts bot 
pes of the cone, the section is a hyperbola as two branches. 
n one mathematical sense, all conic sections can defined in terms of 

eccentricity (6). he numerical value of E is an in 
of the conic (rotund or slender) and also an indication of the i 
conic. 

f the eccentricity is zero, the conic is a circle; if t e eccentricity is greater 
than zero but less than one, the conic is an ellipse; if t e eccentricity is e 

onic is a parabola; and if the eccentricity is greater t 

n locating orbits or trajectories in space, it is possible to ake use of either rec- 
tangular (sometimes called Cartesian) or polar coordinates. dealing with artificial 
satellites, it is often more convenient to use polar rather than rectangular coordinates 
because the center of the earth can be used both as the origin of the coordinates and 
as one of the foci of the ellipse. 

Parabola, 6 - 2 = 1 - 
d 

Hyperbola, r = -5 > 1 
d 

Directrix - 
ectangular and polar coordinates superimposed on 

f rectangular and polar coordinates are superimposed upon a set of conics as 
shown in Figure 11, equations of the curves can be derived. 



the eccentricity of a conic is E = is ratio is constant for a 

inates to polar coordinates, substitute as fo 

x = r cos v (v is e lower case Gree 

moving in a plane s ~ c h  that the sum 

e eccentricity of 

e latus rectum an 



are related to the total mechanical energy and total angu 
satellite. Thereby they offer a means of determining the 
simple arithmetic of an ellipse rather than the vector calculus of celestia 
mechanics. 

Sample problem: A satellite in a transfer orbit has 
above the surface of the earth and an apogee at 19,360 N 
for the ellipse traced out by this satellite. 

Solution: 

Since the center of the earth is one focus of the ellipse, first convert t 
apogee and perigee to radii by adding the radius of the earth (3440 N 

radius of perigee r, = altitude of perigee 
= 300 + 3440 = 

radius of apogee r, = altitude of apogee 
= 19,360 + 3440 

t radius of earth 



is information, an exaggerated sketch of the ellipse can b'e made ( 

rp 4- ra = major axis = 

en 2 a = 3 7  

ince a and c are known, fin b from the relations 

e formula given for eccentricity: 

se is a conic section wit 

e circle is a special case of an ellipse 
center; thus E = 0. 

circle. 



at no exter 



f a body is at infinity, it has a specific equal to - = = 0. 
r 00 

A similar case can be presented for kinetic energy. A body wit 
relative to the center of the earth has kinetic energy defined by: 

Again, the specific kinetic energy (kinetic energy per unit mass) can be de- 
fined as: 

KE v2 Specific KE = - - - 
m - 2 

n general, a body in free motion in space has a particular amount of me- 
chanical energy, and this amount is constant because of the conservation of 
mechanical energy. 

chanical Energy = K 

A more useful expression is obtained if we define Specific 
E, or the Total echanical Energy per unit mass. bus, we can write: 

1 

, is also conserved in unpowered flig 
ft" 

are -. Since the mass term does not ap 
sec2 

represents the specifi 
ution to the Specific 

the body is on an elliptical or circul 
1 to zero, the path is parabolic 
is positive, the path is hyperbolic 

from the earth's gravitational field. 
ough the value of E, once determined, remains constant i 
ntinuous change in the values of specific kinetic ene 

tential energy. High velocities nearer the surface of the eart 
specific kinetic energies, are exchanged for greater s 
as distance from the center of the eart 
for altitude; kinetic energy is traded for potential energy. The sum remains 
constant. 

en a body is in motion, it has momentum. 
body possesses because of its mass and its velocity. 

is expressed as mv and e units, foot-slug, 
sec 



y forces such as frict 

forces are negligible 

to m r2 0. 

convenience in calculations, 
as the angular momentum 

Angular Momentum = m ? w 

H = Ang.  Momentum 
m 

:. H = v,r (Circular Motion) 

tude of the instantaneous velocity vector of a body rotating in constant ci 
motion about a center with radius r is equal to o r  and that the vector is p 

, the cific angular momentum of a circular 
d as s 

he general application of specific angular momentum to all orbits re 
of velocity perpendicular to the radius vector be used. 

velocity component is defined as 

Vf, = v COS (fi 

where 4 is the angle the velocity vector makes with the local 
perpendicular to the radius. In an elliptical orbit, the geo 

as a total velocity v 

r cos 4 ,  defines the specific angular momentum for all or- 
is the flight path between the local 
velocity vector. at the angle (b is 

equal to zero for circular orbits. Further, in elliptical orbits, 
oints of apogee and perigee. 

tant formulas that have been presented in this 
ese formulas permit a trajectory or an orbit 

defined from certain basic data: 

2-23 

4 is zero at the 



H =. vrcos  

jectory (or orbit) at a give 
e absence of outside forces 

determined at any other 
ecific angular momentum and the 

practical application to the two-body 
e free-flight portion of the ballistic missile trajectory. 

icit in Newton's aw of universal 
e universe attracts, an y, every other mass unit in t 

all masses at large 

y trajectory is si 



he problem is to establish the 
body, m,, or to define its trajectory. This is a typical problem in mechanics- 
given the present conditions of a body, what will these conditions be at any 

irst, we shall find r as a function of v, where v is t 
angle measured from a reference axis to the radius vector. 

At the outset, it should be apparent that the entire trajectory 
in the plane defined by the velocity vector and the point origin. 
forces causing the body, m2, to move out of this plane; otherwise, 
are not those of a two-body free-flight problem. 

n the earlier outline of the laws of conservation of energy and momentum, 
following conditions were established: 

v2 - L  = 
2 r = a constant 

= vr cos &) = a constant 

quations (1) and (2) can be combined and, wit of the calculus, 
the following equation can be derived: 

quation (3)  is the equation of a two-body trajectory in polar coordinates. 
arlier, the following equation was given as the equation of any conic section in 

polar coordinates, the origin located at a focus: 

r =  E 

1 + E COS u 

quations (3)  and (4) are of the same form; hence, equation ( 3 )  is also the 
of any conic section (origin at a focus) in terms of t physical constants, 
, and the two-body trajectories are then conic sections his conclusion sub- 

stantiates Kepler9s first law. In fact, Kepler's first law is a special case because an 
ellipse is just one form of conic section. 



Since equations ( 3 )  and (4) are of the same form, it is possible to equate like 
terms, which will lead to relationships between the physical constants, 
and the geometrical constants, E,  a, b, and c. 

Analysis of the two-body trajectory equation will give an understanding of the 
physical reaction of a vehicle (small body) under the influence of a planet 
(large body) . 

0, the trajectory is an elli 
is simply that the kinetic energy 

relatively low velocity, is less than the ma 
fore, the body cannot possibly go all the 

t is no longer attracted 

fore, it will be turned back toward the 
tial energy, it will always 



of approximately 6 1,4 10 

act velocity (eart 

olution: Given 

(a)  At apogee (greatest distance fro 

Altitude (above eart N 

Velocity = 0 (Only for a soun 

r = altitude + eart 

(b) Since the specific energy is constant, 

At the earth's surface: 



v2 (impact) = 2 [ ( -  3.57 X lo7) $. (67.4 X lo7)]  = 2(63.8 X 107)•’t2/sec2 
v (impact) = 35,70Oft/sec Answer 

This is also the approximate burnout velocity of the vehicle. As the surface 
escape velocity is 36,700 ft/sec, it is clear that ioneer I did not attain escape 
velocity, and so it returned to earth. 

While parabolic and hyperbolic trajectories, especially the latter, are of interest in 
problems of interplanetary travel, elliptical trajectories comprise the ballistic missile 
and satellite cases, which are of current military interest. It is important, then, to re- 
ate the dimensions of an ellipse (a, b, and c) to the physical constants ( 

p)  as was previously done for E. 
. rp = 2a, was presented earlier. f this equation is applied 

r =  and r, = a - c. 
1 + E  



C u t ~  = - c = ~a into (8), a 

equations (5) an 

Substituting these relations ips into equation ( 9 ) ,  

erefore, 

Equations ( 10) and ( 12) are extremely important relationships; an understand- 
ing of them is essential to material that follows on ballistic missiles and satellites. If 
injection conditions of speed and radius are fixed, it is clear that a, the semirnajor 
axis of the elliptical tr ctory, becomes fixed, regardless of value of the flight 
path angle at burnout. uation ( 10) points out -there is a ct relationship be- 
tween the size of an orbit and the energy level of the orbiting object. 
points out that for a given energy level there is a direct relationship between the 



length of the semi atus rectum of an elliptical traject 
the specific angula momentum of the orbiting object. 

1 trajectory are determined by th 

e general equation of two-body trajectories as now been intr 
well to consider 

\ I-, Orbit / 



istic missile trajectory, perigee is entirely fictitiou 

ing of the relationship between v an 

ballistic missiles (see App. 6 ) .  

During their free flight trajectory, satellites an 

The orientation, shap and size of orbits are important to the 
of prescribed missions. herefore, eccentricity ( E ) ,  major axis ( 

distance between the foci (2c) are of interest. 
the relationships of these geo 
make an analysis of an orbit. 



(radius at perigee) = a - c 

(radius at apogee) = a + c 

Specific mechanical energy, , and specific angular mom 
concern when elliptical and circular orbits are discussed. re are no outside 
forces acting on a vehicle in an orbit, the specific mechanic and the specific 
angular momentum will constant values, regardless of position in the orbit. 
This means that if E and known at one point in the orbit, they are then known 
at each and every other point in the orbi At a given position if radius r, speed v, 
and flight path angle Q, are known, E and can be determined from: 

are known for a particular orbit, 
a certain point in the orbit are to be det 

equation can be solved for v, and then the angular mom 
be solved for Q,. 

e equations for the ed in circular and elliptical 
he equation for circular 

e equation for elli 

that is important in the analysis of 

Now, substitute for v t eed in circular orbit: 



ultiply numerator and denominator of t 

Using the principle of Kepler's third law, replace r by the mean distance from 
e focus, which is equal to the semimajor axis a, and the equation becomes: 

. Since is a constant, 
P 

sec2 
2.805 X 10-l5 ft" 

* Even though A,,, = 0•‹, if burnout altitude were not given as perigee altitude, you would have to de- 
- T Y Y  

termine if this were perigee or apogee. To do this, you would compute the circular speed for the given 
burnout altitude and compare this with the actual speed. If the circular speed is greater than the actual, 
burnout was at apogee; if the circular speed was less than the actual speed, burnout was at perigee. 



Ans 

is interesting to compare the 
a1 orbit (later data gave a hig 

Computed figures 
25,700 &/see 

88.3 rnin 

ree significant figures results in 
on using slide rule ac 

problem, it is evident t 
ssions presented thus far 
a trajectory or orbit rathe 

for academic or generalized d' 
system design and operation. 
two dimensional orbital plane 

cets of orbital mechanics, it is ne 



n one of the coordinate systems for s 
e center of the earth. This 

for all earth orbits. 
of the coordinate systems e 

angular measurements can be 
he reference frame should be regular in sha 

the requirement of a regu 
reference if it were fixed in 



POINT OF ARIES ( T )  w 

erefore, the celestial sohere is used to satisfv t e reauirement for a reference 

e surface contains t 

the center of the system an. 
osition measuremen 

e next item of im 



e orbit further, the 
from the ascending node to the perigee, measured along 
the direction of motion, is called the argument of pe 

in addition to the coordinates of the orbit, a 
sion of the ascending node is known, along 

major axis of the orbit, 
determined at any time. 
perigee, eccentricity, maj 
node) form a con 
describe the orbital 
constitute one set of orbi 

lements. 

Another interesting facet of 
is a relationship between 
restriction arises from the 

and, therefore, 
he inclination of the orbit 

following formula : cos 
imuth is the heading o 

example, a satellite 
due east (Azimut 

to the equatorial 

m the above that the 
aneuvering) injectio 
aunch sites, thereby, will perm 

tion angles from that minimum ( 
polar orbits (plus retrograde supp 

as range safety limitations. 
(35"N) would permit incl 

e the inclination of the orbital plane is defined, the 



Figure 23. Satellite ground track geometry. 

There are five primary factors which affect the ground track of a sate 
moving along a free flight trajectory. These are: 

1. Injection point 
2. Inclination angle ti) 
3. Period 0') 
4. Eccentricity (€1 
5. Argument of Perigee (o) 

Of the above, the injection point simply determines the point on the surface from 
which the ground track begins, following orbital injection of the sate1 
angle has been discussed in the previous section and will be treated below in further 

eriod, eccentricity, and argument of perigee each affect th 
often difficult to isolate the effect of any one of the three. 

general remarks regarding the three factors will be 
mathematical treatment. 

f the study of satellite ground trac s is predicated upon 
rcular orbit is easy to visualize. 

ound track coincides wit 



south of the equator for 

The inclination of an orbit is determined by both the latitude of 
the direction of the vehicle's velocity at the time of injection or e 

at is, the cosine of the inclination angle e 
e sine of the azimuth (when the azimu 

mum inclination whi an orbital plane can be 
degrees of latitude which injection occurs. minimum inclination occurs 
when the direction of the vehicle's velocit 
jection. If th 
east or west, 



On a flat map of the earth, satellite ground tracks appear to have different 
und track for a vehicle in an inclined circular 

e with North-South limits equal to 

rotation is considered, visua 

is its instantaneous 



satellite's ground track. 
solute speed of the sate 

increases. 

y magnitude in an elliptical or 
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aces, each succes- 



f the   lane of the circular orbit i 

latitude of perigee is fixed 
ment of perigee (o) : 

erigee) = sin i sin o 

Apogee is located on the same meridian as erigee and is at t 
latitude but in the opposite hemisphere. 

ircular ground trac s similar to the one s 
proposed in certain nav ation satellite concepts. 
northern hemisphere, a multiple satellite 
might be used for supersonic aircraft na 



i Perigee I 
I 

Perigee 

I 

Apogee 7 

Eccentricity ( 6 )  = .6 
Inclination (i) = 60•‹ 
Argument of Perigee (a) = As Stated 

ee. 
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Perigee & Apogee 

L =GO'S I*@ 
Apogee 

Eccentricity ( r )  - .6 
Inclination (i) = 60•‹ 
Argument of Perigee (u) = As Stated 

. Variation of elli 





Transfer 
ellipse 

oc deter 
a ann tr 

(1) Determine the velocity the vehicle has in the initial orbit. 

(2) Determine the velocity required at the initial point in the transfer orbit. 

( 3 )  Solve for the vector difference between the velocities foun 

(4) Find the velocity the vehicle has at the final point in the transfer ellipse. 



Compute the velocity required to keep the vehicle in the final orbit. 

Find the vector difference between the velocities found in steps 4 and 5. 

Find the total Av for the maneuver by adding the Av from step 3 to the Av from 
step 6. 



I L--- Polar orbit  

ure 

n this case, the orbital s 
to each other. Transferring 
require the Av represented 
extreme case) the v exceeds the existing orbital spee 

igure 39 

f only the plane is to be changed, then vl = v2 and the problem is simplified. 
ut, if altitude (or eccentricity) is also to be changed, vl and vz will not be e 
The amount of Av required to accomplish a plane change is, of course 

pendent upon the amount of change desired. t is also a function of the altitude 
at which the change is made. 

* See appendix B. 



words, it is rnor 
ellite is low-at 

19,800 ft/sec Speed at apogee of transfer ellipse 

the orbit of an artificial satellite is calculate 
us far, it will vary slightly from the actual 



One cause of per 

nitially, the satellite is in orbit 1 about an att 

As the satellite approaches t 
dominates, and the center of the moon beco 
of the earth. Since the vehicle approaches 
velocity, it must leave 
than escape velocity. 

switches back to the ea 

orbit 2. A hyperbolic encoun 



Another cause of perturbations is the 

erlurbations whic e gravitational force are: 

es (major axis) or rotation of 



an high-altitude satellites. 
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Satellites requiring sun synchronous orbits (for photography or other reasons) 
are an example of how regression of the nodes can be used to practical ad- 
vantage in certain situations. Fig, 46 the satellite is injected into an orbit 
passing over the equator on the sunlit side of t at local noon (t  
overhead). This condition initially aligns the or ne so that it contains a 
line between the earth and sun. The altitude ar circular orbit deter- 
mines the angle of inclination required in order to maintain the sun synchrono 
nodal regression rate of approximately one degree per day (360•‹/year). 
Fig. 45 note the r ired inclination angles of approximate1 
altitudes shown. inclination angle and orbital 
correctly, then re ion of the nodes will rotate the 
the angle of right ascension) 
Thus, we see that this per 
bulge maintains the desired angle of right ascension which, along with the angle 

inclination, orients the orbital plane within the celestial sphere. 
e earth moves in its orbit the desired orientation for best photogr 

tained without using propellant. 



tion due to oblateness is difficult t esult is that the 
trajectory rotates within the orbital 
has the effect of shifting the  lo^. 

nge in the argument of perigee is a function of satellite 
altitude and inclination angle. 
rotation is zero. igure 48 illustrates otation rate varies 
inclination angle r orbits with a 100 
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Drag on a satellite will cause a decrease in eccentricity, a 
major axis, and a rotation o 
in eccentricity and major a 

ing that the drag is concentrated near 
minish to circular speed, and the ne 

major axis decreasing to line s 

e electromagnetic forces, ra 

e general operation of moving a body from an earth orbit to a precise point on 
the surface of the earth is a difficult problem. e orbit may be circular or ellipti- 

, high or low, and inclined at various degrees to the rotational axis of the earth. 
e deorbiting maneuver may be the lofted, depressed, or retro approach which is 

discussed in this section. Time of flight is a major para 
esents one of the more difficult of mathematical problems. 

theory developed he is sufficiently general in scope that it may be modified to 
he complexity of the problem is reduced in the following sim- 
eorbiting from a circular, polar orbit from a point over the 

ing no atmosphere.* approach and solution will permit 
get, provided fuel for othrust is no limitation. 

*The student may consider the effect of the atmosphere by using the radius of reentry rather than the 
radius of the earth, and by then considering the range and time of flight for a specific reentry body. The 
solution may also be modified to consider elliptical orbits and inclined orbits. 
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Consider a target at 60' north latitude. f the earth could be stopped from rotat- 
the target in the plane of the circul 

impact a selected target on a rot 

ooking first at the geometry of the 

- 

rite the general equation of the conic as k ~ =  r ( 1  4- E cos v) and evaluate at 
e two known points, re** an.d r,, noting that at impact cos v = - cos Ot 

- - - , and at retrofire cos (1 80•‹)  = - 

Then k~ = re (1 - E~ sin 

* 8 figures related to the deorbit problem appear at the end of this section. 

* * r, is radius of the earth, but radius of re-entry could be used if desired. 
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e that in order to find eb and, in turn, the ma 
target and the altitude of the circular orbit nee 

hen the orbital vehicle arrives directly 
ect which will impact at 

Eb = ra - re - - 
r, - re sin L sin 60' 

try, note that there is a satellite in 
ft/sec. A retrovelocity 

,790 ft/sec so that the object 

f velocity versus latitu 
ic altitude, for rele 



- GOS Ut = - 



Noting ut lies between 180' and 270': 

- 
ut - eb sin ut - TI- 

tb = (15'78 f t)3 r4.084 - 5 2 0  sin 230.4' - 3. 
.08 X 1015 ft3/sec2 

tb = 676 sec = 1 

igure 56 shows tb in minutes versus a plot of target latitud 
be recognized that this chart for a specific orbital altitude a 
also the more general graph, 

Consider impacting a target at 60" north latitude and 3 
plane of the satellite is coincident with the 70" east meridian. 
the satellite is at oint 1 and the target is at 
and orbital plane is 40". owever, the target is 

(360•‹/24 hrs) 

aw of Cosines an 



Also, the value o st be known so that the proper direction of 
be determined. The s is preferred for this calculation, although 

sin p = 

P = 

ft/sec sin 37.18' 

rom the solution of this simplified object-from-orbit problem, it is apparent that 
such a calculation is not really simple. Other athematical approaches and other op- 
erational problems are even more difficult. owever, the theory presented can be 

ore difficult cases. 

est to determine the propellant necessary to per 
,, = 450 sec (a reasonable figure in the near 

itial weight of 10,000 po ds, compute the amoumt of propellant 

- 
2 - = 3,590 lbs 

This weight of propellant represents = 6,400 = 64.1 % of the weight in orbit 
10,000 

prior to maneuvering. 

y restricting the plane change (side range) to a = 7.18 

, = 4,190 lbs, an = 41.9%. 

of a satellite in a circular orbit and a time 
ole were given. A target was selected, and no 

earth atmosphere was assumed e theory, the required velocity for a deorbit- 
s calculated, and the position of the target at the time of impact was 
th this information and the use of the laws of sines and cosines, the 

magnitude of retroveloci and the direction to deorbit on target were calculated. 
Also, the amount of pro ant required was compute 

2-61 



North Pole 
I 
I 

t 







ure 

2-65 





Figure 55 
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! linear angular 4. (a) Vf = vo + at acceleration 4. ('1 ~f = a0 + at 

5. (a) 2as = vf2 - vO2 

6, (a) s = r 

(6) at = r a  

a-linear acceleration 
-period 

r-radius 
s-linear displacement 
t-time interval 
v-linear velocity 
a-angular acceleration 

angular displacement 
-angular velocity 

av- average 
f-final value 

r-radial 
t-tangential 

city : - - - - ra rp 
ra rp 

2. se: r , - t r , =  



pecific Mechanical 

4. Specific Angular 

= V r COS 

ody Relationships : 

6. Variation of g: 

a2 = b2 + c2 - 2 
aw of Sines : 

8. Constants: 

1 = 6080 f t  

 radians = 180' 

radian = 57.3' 

nclination of Orbit a1 






